Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559985

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Subject(s)
Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806342

ABSTRACT

Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.


Subject(s)
Calcium , Connexins , Biological Transport , Calcium/metabolism , Connexins/metabolism , Humans , Ions
3.
Proc Natl Acad Sci U S A ; 108(25): 10168-73, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21646545

ABSTRACT

Altering the expression level of proteins that are subunits of complexes has been proposed to be particularly detrimental because the resulting stoichiometric imbalance among components would lead to misassembly of the complex. Here we show that assembly of the phage HK97 connector complex is severely inhibited by the overexpression of one of its component proteins, gp6. However, this effect is a result of the unusual mechanism by which the oligomerization and assembly of gp6 are controlled. Alteration of this mechanism by single amino acid substitutions leads to a reversal of the response to gp6 overexpression. Surprisingly, the binding partner of gp6 within the phage particle is expressed at a 500-fold higher concentration despite their identical stoichiometry within the complex. Our data emphasize that a generalized prediction of the effects of changes in the expression level of protein complex subunits is very difficult because these effects are dependent upon assembly mechanism.


Subject(s)
Bacteriophages/metabolism , Protein Subunits/metabolism , Viral Structural Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/ultrastructure , Escherichia coli/virology , Gene Expression Regulation, Viral , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 107(32): 14384-9, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20660769

ABSTRACT

Evolutionary relationships may exist among very diverse groups of proteins even though they perform different functions and display little sequence similarity. The tailed bacteriophages present a uniquely amenable system for identifying such groups because of their huge diversity yet conserved genome structures. In this work, we used structural, functional, and genomic context comparisons to conclude that the head-tail connector protein and tail tube protein of bacteriophage lambda diverged from a common ancestral protein. Further comparisons of tertiary and quaternary structures indicate that the baseplate hub and tail terminator proteins of bacteriophage may also be part of this same family. We propose that all of these proteins evolved from a single ancestral tail tube protein fold, and that gene duplication followed by differentiation led to the specialized roles of these proteins seen in bacteriophages today. Although this type of evolutionary mechanism has been proposed for other systems, our work provides an evolutionary mechanism for a group of proteins with different functions that bear no sequence similarity. Our data also indicate that the addition of a structural element at the N terminus of the lambda head-tail connector protein endows it with a distinctive protein interaction capability compared with many of its putative homologues.


Subject(s)
Bacteriophages/genetics , Evolution, Molecular , Viral Proteins/genetics , Virus Assembly , Bacteriophages/chemistry , Viral Proteins/physiology
5.
Adv Exp Med Biol ; 726: 115-42, 2012.
Article in English | MEDLINE | ID: mdl-22297512

ABSTRACT

In this chapter, we describe the structure, assembly, function, and evolution of the long, noncontractile tail of the siphophages, which comprise ∼60% of the phages on earth. We place -particular emphasis on features that are conserved among all siphophages, and trace evolutionary connections between these phages and myophages, which possess long contractile tails. The large number of high-resolution structures of tail proteins solved recently coupled to studies of tail-related complexes by electron microscopy have provided many new insights in this area. In addition, the availability of thousands of phage and prophage genome sequences has allowed the delineation of several large families of tail proteins that were previously unrecognized. We also summarize current knowledge pertaining to the mechanisms by which siphophage tails recognize the bacterial cell surface and mediate DNA injection through the cell envelope. We show that phages infecting Gram-positive and Gram-negative bacteria possess distinct families of proteins at their tail tips that are involved in this process. Finally, we speculate on the evolutionary advantages provided by long phage tails.


Subject(s)
Bacteriophages/ultrastructure , Protein Conformation , Viral Proteins/chemistry , Bacteriophages/genetics , Bacteriophages/metabolism , Biological Evolution , DNA, Viral/metabolism , Genome, Viral , Models, Molecular , Molecular Chaperones/chemistry , Viral Proteins/genetics
6.
Data Brief ; 43: 108415, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35789908

ABSTRACT

SARS-CoV-2 pandemic opens up the curiosity of understanding the coronavirus. This demand for the development of the regent, which can be used for academic and therapeutic applications. The present data provide the biochemical characterization of synthetically developed monoclonal antibodies for the SARS-CoV-2 proteins. The antibodies from phage-displayed antibody libraries were selected with the SARS-CoV-2 proteins immobilized in microwell plates. The clones which bind to the antigen in Fab-phage ELISA were selected, and a two-point competitive phage ELISA was performed. Antibodies binding kinetic of IgGs for SARS-CoV2 proteins further carried with B.L.I. Systematic analysis of binding with different control proteins and purified SARS-CoV-2 ensured the robustness of the antibodies.

7.
J Mol Biol ; 434(10): 167583, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35405107

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection has impacted the world economy and healthcare infrastructure. Key reagents with high specificity to SARS-CoV-2 proteins are currently lacking, which limits our ability to understand the pathophysiology of SARS-CoV-2 infections. To address this need, we initiated a series of studies to generate and develop highly specific antibodies against proteins from SARS-CoV-2 using an antibody engineering platform. These efforts resulted in 18 monoclonal antibodies against nine SARS-CoV-2 proteins. Here we report the characterization of several antibodies, including those that recognize Nsp1, Nsp8, Nsp12, and Orf3b viral proteins. Our validation studies included evaluation for use of antibodies in ELISA, western blots, and immunofluorescence assays (IFA). We expect that availability of these antibodies will enhance our ability to further characterize host-viral interactions, including specific roles played by viral proteins during infection, to acquire a better understanding of the pathophysiology of SARS-CoV-2 infections.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Viral Proteins , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/metabolism , Cell Surface Display Techniques , Coronavirus RNA-Dependent RNA Polymerase/analysis , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/analysis , Viral Proteins/analysis
8.
MAbs ; 13(1): 1933690, 2021.
Article in English | MEDLINE | ID: mdl-34190031

ABSTRACT

In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered "double-DATEs" targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Neoplasm/immunology , Antineoplastic Agents/pharmacology , Immunotherapy/methods , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , CD3 Complex/immunology , Carcinoma, Pancreatic Ductal/immunology , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Pancreatic Neoplasms/immunology , Xenograft Model Antitumor Assays
9.
ACS Nano ; 15(12): 19202-19210, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34813293

ABSTRACT

Advances in single-cell level profiling of the proteome require quantitative and versatile platforms, especially for rare cell analyses such as circulating tumor cell (CTC) profiling. Here we demonstrate an integrated microfluidic chip that uses magnetic nanoparticles to capture single tumor cells with high efficiency, permits on-chip incubation, and facilitates in situ cell-surface protein expression analysis. Combined with phage-based barcoding and next-generation sequencing technology, we were able to monitor changes in the expression of multiple surface markers stimulated in response to CTC adherence. Interestingly, we found fluctuations in the expression of Frizzled2 (FZD2) that reflected the microenvironment of the single cells. This platform has a high potential for in-depth screening of multiple surface antigens simultaneously in rare cells with single-cell resolution, which will provide further insights regarding biological heterogeneity and human disease.


Subject(s)
Bacteriophages , Nanoparticles , Neoplastic Cells, Circulating , Cell Line, Tumor , Cell Separation , Humans , Microfluidics , Tumor Microenvironment
10.
Sci Transl Med ; 13(591)2021 04 28.
Article in English | MEDLINE | ID: mdl-33910979

ABSTRACT

Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain/metabolism , Brain Neoplasms/therapy , Cell Line, Tumor , Glioblastoma/therapy , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
11.
Protein Sci ; 29(10): 2075-2084, 2020 10.
Article in English | MEDLINE | ID: mdl-32803886

ABSTRACT

Phage-displayed synthetic antibody (Ab) repertoires have become a major source of affinity reagents for basic and clinical research. Specific Abs identified from such libraries are often screened as fragments antigen binding (Fabs) produced in bacteria, and those with desired biochemical characteristics are reformatted for production as full-length immunoglobulin G (IgG) in mammalian cells. The conversion of Fabs to IgGs is a cumbersome and often rate-limiting step in the development of Abs. Moreover, biochemical properties required for lead IgG development are not always shared by the Fabs, and these issues are not uncovered until a significant effort has been spent on Abs that ultimately will not be useful. Thus, there is a need for simple and rapid techniques to convert phage-displayed Fabs to IgGs at an early stage of the Ab screening process. We report the generation of a highly diverse phage-displayed synthetic single-chain Fab (scFab) library, in which the light and heavy chains were tethered with an optimized linker. Following selection, pools of scFabs were converted to single-chain IgGs (scIgGs) en masse, enabling facile screening of hundreds of phage-derived scIgGs. We show that this approach can be used to rapidly screen for and select scIgGs that target cell-surface receptors, and scIgGs behave the same as conventional IgGs.


Subject(s)
Cell Surface Display Techniques , Gene Library , Immunoglobulin Fab Fragments , Immunoglobulin G , Single-Chain Antibodies , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
12.
Oncoimmunology ; 8(2): e1539613, 2019.
Article in English | MEDLINE | ID: mdl-30713798

ABSTRACT

Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. EOC is often diagnosed at late stages, with peritoneal metastases and ascites production. Current surgery and platinum-based chemotherapy regimes fail to prevent recurrence in most patients. High levels of Transforming growth factor-ß (TGF-ß) within ascites has been linked to poor prognosis. TGF-ß signaling promotes epithelial-mesenchymal transition (EMT) in EOC tumor cells, and immune suppression within the tumor microenvironment, with both contributing to chemotherapy resistance and metastasis. The goal of this study was to develop specific synthetic inhibitory antibodies to the Type II TGF-ß receptor (TGFBR2), and test these antibodies in EOC cell and tumor models. Following screening of a phage-displayed synthetic antigen-binding fragment (Fab) library with the extracellular domain of TGFBR2, we identified a lead inhibitory Fab that suppressed TGF-ß signaling in mouse and human EOC cell lines. Affinity maturation of the lead inhibitory Fab resulted in several derivative Fabs with increased affinity for TGFBR2 and efficacy as suppressors of TGF-ß signaling, EMT and EOC cell invasion. In EOC xenograft and syngeneic tumor models, blockade of TGFBR2 with our lead antibodies led to improved chemotherapy response. This correlated with reversal of EMT and immune exclusion in these tumor models with TGFBR2 blockade. Together, these results describe new inhibitors of the TGF-ß pathway that improve antitumor immunity, and response to chemotherapy in preclinical EOC models.

13.
mBio ; 6(3): e00251, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26060269

ABSTRACT

UNLABELLED: Self- versus nonself-recognition in bacteria has been described recently through genetic analyses in multiple systems; however, understanding of the biochemical properties and mechanisms of recognition-determinant proteins remains limited. Here we extend the molecular and biochemical understanding of two recognition-determinant proteins in bacteria. We have found that a heterotypic complex is formed between two bacterial self-recognition proteins, IdsD and IdsE, the genes of which have been shown to genetically encode the determinants for strain-specific identity in the opportunistic bacterial pathogen Proteus mirabilis. This IdsD-IdsE complex forms independently of other P. mirabilis-encoded self-recognition proteins. We have also shown that the binding between IdsD and IdsE is strain- and allele-specific. The specificity for interactions is encoded within a predicted membrane-spanning subdomain within each protein that contains stretches of unique amino acids in each P. mirabilis variant. Finally, we have demonstrated that this in vitro IdsD-IdsE binding interaction correlates to in vivo population identity, suggesting that the binding interactions between IdsD and IdsE are part of a cellular pathway that underpins self-recognition behavior in P. mirabilis and drives bacterial population sociality. IMPORTANCE: Here we demonstrate that two proteins, the genes of which were genetically shown to encode determinants of self-identity in bacteria, bind in vitro in an allele-restricted interaction, suggesting that molecular recognition between these two proteins is a mechanism underpinning self-recognition behaviors in P. mirabilis. Binding specificity in each protein is encapsulated in a variable region subdomain that is predicted to span the membrane, suggesting that the interaction occurs in the cell envelope. Furthermore, conversion of binding affinities in vitro correlates with conversion of self-identity in vivo, suggesting that this molecular recognition might help to drive population behaviors.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Multimerization , Proteus mirabilis/genetics , Proteus mirabilis/metabolism , Alleles , Protein Binding , Protein Structure, Tertiary
14.
mBio ; 4(4)2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23882014

ABSTRACT

UNLABELLED: Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in contrast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for this territorial behavior. Here we have identified two new gene clusters: one (idr) encodes rhs-related products, and another (tss) encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracellular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system. The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for the fundamental behaviors of self-recognition and territoriality in a bacterial model system. IMPORTANCE: Our results support a model in which self-recognition in P. mirabilis is achieved by the combined action of two independent pathways linked by a shared machinery for export of encoded self-recognition elements. These proteins together form a mechanistic network for self-recognition that can serve as a foundation for examining the prevalent biological phenomena of territorial behaviors and self-recognition in a simple, bacterial model system.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Locomotion , Proteus mirabilis/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Multigene Family , Proteus mirabilis/genetics , Proteus mirabilis/metabolism , Sequence Analysis, DNA
15.
J Mol Biol ; 395(4): 754-68, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19895817

ABSTRACT

The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 A crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.


Subject(s)
Siphoviridae/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Microscopy, Electron, Transmission , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/ultrastructure , Sequence Homology, Amino Acid , Siphoviridae/genetics , Siphoviridae/physiology , Siphoviridae/ultrastructure , Static Electricity , Structural Homology, Protein , Viral Proteins/genetics , Viral Proteins/physiology , Viral Proteins/ultrastructure , Virus Assembly
16.
Biochemistry ; 43(25): 8077-83, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15209503

ABSTRACT

Polar residues comprise about 15% of the transmembrane (TM) domains of proteins, where they can stabilize structure via native side chain-side chain interhelical hydrogen bonds between TM helices. However, non-native H-bonds may be implicated in disease states, through limiting protein dynamics during transport and/or misfolding the protein by inducing non-native rotational positions about TM helical axes. Here we have undertaken an investigation of the presence and strength of H-bond interactions within a series of helix-loop-helix ("hairpin") constructs derived from TM helices 3 and 4 (italic) of the cystic fibrosis transmembrane conductance regulator (CFTR) (prototypic sequence G(194)LALAHFVWIAPLQ(207)VALLMGLIWELLQASAFAGLGFLIV(232)LALFQ(237)AGLG(241)) in which wild-type Q207 in TM3 forms an interhelical H-bond with CF-phenotypic mutant V232D in TM4 [Therien, A. G., Grant, F. E., and Deber, C. M. (2001) Nat. Struct. Biol 8, 597-601]. In the present work, a library of 21 TM3/4 constructs was prepared, where Asp residues were placed individually at TM4 positions 221-241. Using gel shift assays-in which H-bond-linked hairpins (closed conformation) migrate faster than the elongated forms (open conformation)-we found that Q207 in TM3 is able to "capture" all 21 TM4 D mutations into measurable populations of interhelical H-bonds. A similar library of TM4 D mutants-but also containing Q207L-reverted to wild-type migration rates, confirming Q207 as the polar partner for TM4 D residues. In view of the broad capture range of Q207, these results emphasize the potential consequences to folding and dynamics of introducing polar mutations into the TM domains of membrane proteins in the vicinity of a native polar TM residue.


Subject(s)
Amino Acids/chemistry , Amino Acids/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Amino Acid Sequence , Amino Acid Substitution , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Molecular Weight , Mutagenesis, Site-Directed , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL