Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157855

ABSTRACT

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Subject(s)
Pulmonary Alveolar Proteinosis , Receptors, CCR2 , Child , Humans , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/diagnosis , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Reinfection/metabolism
3.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-37973175

ABSTRACT

RATIONALE: Whole lung lavage (WLL) is a widely accepted palliative treatment for autoimmune pulmonary alveolar proteinosis (aPAP) but does not correct myeloid cell dysfunction or reverse the pathological accumulation of surfactant. In contrast, inhaled recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a promising pharmacological approach that restores alveolar macrophage functions including surfactant clearance. Here, we evaluate WLL followed by inhaled rGM-CSF (sargramostim) as therapy of aPAP. METHODS: 18 patients with moderate-to-severe aPAP were enrolled, received baseline WLL, were randomised into either the rGM-CSF group (receiving inhaled sargramostim) or control group (no scheduled therapy) and followed for 30 months after the baseline WLL. Outcome measures included additional unscheduled "rescue" WLL for disease progression, assessment of arterial blood gases, pulmonary function, computed tomography, health status, biomarkers and adverse events. Patients requiring rescue WLL were considered to have failed their assigned intervention group. RESULTS: The primary end-point of time to first rescue WLL was longer in rGM-CSF-treated patients than controls (30 versus 18 months, n=9 per group, p=0.0078). Seven control patients (78%) and only one rGM-CSF-treated patient (11%) required rescue WLL, demonstrating a 7-fold increase in relative risk (p=0.015). Compared to controls, rGM-CSF-treated patients also had greater improvement in peripheral arterial oxygen tension, alveolar-arterial oxygen tension difference, diffusing capacity of the lungs for carbon monoxide and aPAP biomarkers. One patient from each group withdrew for personal reasons. No serious adverse events were reported. CONCLUSIONS: This long-term, prospective, randomised trial demonstrated inhaled sargramostim following WLL reduced the requirement for WLL, improved lung function and was safe in aPAP patients. WLL plus inhaled sargramostim may be useful as combined therapy for aPAP.


Subject(s)
Autoimmune Diseases , Pulmonary Alveolar Proteinosis , Pulmonary Surfactants , Humans , Pulmonary Alveolar Proteinosis/drug therapy , Pulmonary Alveolar Proteinosis/pathology , Granulocyte-Macrophage Colony-Stimulating Factor , Prospective Studies , Administration, Inhalation , Treatment Outcome , Autoimmune Diseases/drug therapy , Pulmonary Surfactants/therapeutic use , Bronchoalveolar Lavage , Oxygen/therapeutic use , Surface-Active Agents/therapeutic use , Biomarkers
4.
Eur J Clin Microbiol Infect Dis ; 43(5): 1003-1007, 2024 May.
Article in English | MEDLINE | ID: mdl-38379052

ABSTRACT

Infections that are unusually severe or caused by opportunistic pathogens are a hallmark of primary immunodeficiency (PID). Anti-cytokine autoantibodies (ACA) are an emerging cause of acquired immunodeficiency mimicking PID. Nocardia spp. are Gram-positive bacteria generally inducing disseminated infections in immunocompromised patients, but seldom also occurring in apparently immunocompetent hosts. Anti-GM-CSF autoantibodies are associated with autoimmune pulmonary alveolar proteinosis (PAP). In those patients, an increased incidence of disseminated nocardiosis and cryptococcosis has been observed. It is unclear whether the PAP or the autoantibodies predispose to the infection. We report an apparently immunocompetent woman presenting with disseminated nocardiosis without any evidence of PAP. Clinical data and radiological images were retrospectively collected. Lymphocyte populations were analyzed by flow cytometry. Anti-GM-CSF autoantibodies were measured by ELISA. A 55-year-old otherwise healthy woman presented with cerebral and pulmonary abscesses. Personal and familial history of infections or autoimmunity were negative. After extensive examinations, a final diagnosis of disseminated nocardiosis was made. Immunologic investigations including neutrophilic function and IFN-γ/IL-12 circuitry failed to identify a PID. Whole-exome sequencing did not find pathogenic variants associated with immunodeficiency. Serum anti-GM-CSF autoantibodies were positive. There were no clinical or instrumental signs of PAP. Trimethoprim-sulfamethoxazole and imipenem were administered, with progressive improvement and recovery of the infectious complication. We identified anti-GM-CSF autoantibodies as the cause of disseminated nocardiosis in a previously healthy and apparently immunocompetent adult. This case emphasizes the importance of including ACA in the differential diagnosis of PID, especially in previously healthy adults. Importantly, anti-GM-CSF autoantibodies can present with disseminated nocardiosis without PAP.


Subject(s)
Autoantibodies , Granulocyte-Macrophage Colony-Stimulating Factor , Nocardia Infections , Nocardia , Humans , Nocardia Infections/diagnosis , Nocardia Infections/immunology , Nocardia Infections/microbiology , Nocardia Infections/drug therapy , Female , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Nocardia/immunology
5.
Am J Respir Crit Care Med ; 205(9): 1016-1035, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35227171

ABSTRACT

Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.


Subject(s)
Autoimmune Diseases , Pulmonary Alveolar Proteinosis , Adult , Autoimmune Diseases/diagnosis , Autoimmune Diseases/therapy , Bronchoalveolar Lavage , Child , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Alveolar Proteinosis/therapy
6.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L438-L448, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35043685

ABSTRACT

Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder caused by recessive mutations in GM-CSF receptor subunit α/ß genes (CSF2RA/CSF2RB, respectively) characterized by impaired GM-CSF-dependent surfactant clearance by alveolar macrophages (AMs) resulting in alveolar surfactant accumulation and hypoxemic respiratory failure. Because hPAP is caused by CSF2RA mutations in most patients, we created an animal model of hPAP caused by Csf2ra gene disruption (Csf2ra-/- mice) and evaluated the effects on AMs and lungs. Macrophages from Csf2ra-/- mice were unable to bind and clear GM-CSF, did not exhibit GM-CSF signaling, and had functional defects in phagocytosis, cholesterol clearance, and surfactant clearance. Csf2ra-/- mice developed a time-dependent, progressive lung disease similar to hPAP in children caused by CSF2RA mutations with respect to the clinical, physiological, histopathological, biochemical abnormalities, biomarkers of PAP lung disease, and clinical course. In contrast, Csf2ra+/- mice had functionally normal AMs and no lung disease. Pulmonary macrophage transplantation (PMT) without myeloablation resulted in long-term engraftment, restoration of GM-CSF responsiveness to AMs, and a safe and durable treatment effect that lasted for the duration of the experiment (6 mo). Results demonstrate that homozygous (but not heterozygous) Csf2ra gene ablation caused hPAP identical to hPAP in children with CSF2RA mutations, identified AMs as the cellular site of hPAP pathogenesis in Csf2ra-/- mice, and have implications for preclinical studies supporting the translation of PMT as therapy of hPAP in humans.


Subject(s)
Pulmonary Alveolar Proteinosis , Pulmonary Surfactants , Animals , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Macrophages, Alveolar/metabolism , Mice , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Surface-Active Agents/metabolism
7.
Occup Environ Med ; 79(8): 550-556, 2022 08.
Article in English | MEDLINE | ID: mdl-35414568

ABSTRACT

OBJECTIVES: To determine whether engineering controls and respiratory protection had measurable short-term impact on indium exposure and respiratory health among current indium-tin oxide production and reclamation facility workers. METHODS: We documented engineering controls implemented following our 2012 evaluation and recorded respirator use in 2012 and 2014. We measured respirable indium (Inresp) and plasma indium (InP) in 2012 and 2014, and calculated change in Inresp (∆Inresp) and InP (∆InP) by the 13 departments. We assessed symptoms, lung function, serum biomarkers of interstitial lung disease (Krebs von den Lungen (KL)-6 and surfactant protein (SP)-D) and chest high-resolution CT at both time points and evaluated workers who participated in both 2012 and 2014 for changes in health outcomes (new, worsened or improved). RESULTS: Engineering controls included installation of local exhaust ventilation in both grinding departments (Rotary and Planar) and isolation of the Reclaim department. Respiratory protection increased in most (77%) departments. ∆InP and ∆Inresp often changed in parallel by department. Among 62 workers participating in both 2012 and 2014, 18 (29%) had new or worsening chest symptoms and 2 (3%) had functional decline in lung function or radiographic progression, but average KL-6 and SP-D concentrations decreased, and no cases of clinical indium lung disease were recognised. CONCLUSIONS: Increased engineering controls and respiratory protection can lead to decreased Inresp, InP and biomarkers of interstitial lung disease among workers in 2 years. Ongoing medical monitoring of indium-exposed workers to confirm the longer-term effectiveness of preventive measures is warranted.


Subject(s)
Lung Diseases, Interstitial , Occupational Exposure , Biomarkers , Follow-Up Studies , Humans , Indium/adverse effects , Lung Diseases, Interstitial/chemically induced , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Pulmonary Surfactant-Associated Protein D , Tin Compounds
8.
Am J Respir Cell Mol Biol ; 62(1): 87-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31310562

ABSTRACT

Desquamative interstitial pneumonia (DIP) is a rare, smoking-related, diffuse parenchymal lung disease characterized by marked accumulation of alveolar macrophages (AMs) and emphysema, without extensive fibrosis or neutrophilic inflammation. Because smoking increases expression of pulmonary GM-CSF (granulocyte/macrophage-colony stimulating factor) and GM-CSF stimulates proliferation and activation of AMs, we hypothesized that chronic exposure of mice to increased pulmonary GM-CSF may recapitulate DIP. Wild-type (WT) mice were subjected to inhaled cigarette smoke exposure for 16 months, and AM numbers and pulmonary GM-CSF mRNA levels were measured. After demonstrating that smoke inhalation increased pulmonary GM-CSF in WT mice, transgenic mice overexpressing pulmonary GM-CSF (SPC-GM-CSF+/+) were used to determine the effects of chronic exposure to increased pulmonary GM-CSF (without smoke inhalation) on accumulation and activation of AMs, pulmonary matrix metalloproteinase (MMP) expression and activity, lung histopathology, development of polycythemia, and survival. In WT mice, smoke exposure markedly increased pulmonary GM-CSF and AM accumulation. In unexposed SPC-GM-CSF+/+ mice, AMs were spontaneously activated as shown by phosphorylation of STAT5 (signal inducer and activator of transcription 5) and accumulated progressively with involvement of 84% (interquartile range, 55-90%) of the lung parenchyma by 10 months of age. Histopathologic features also included scattered multinucleated giant cells, alveolar epithelial cell hyperplasia, and mild alveolar wall thickening. SPC-GM-CSF+/+ mice had increased pulmonary MMP-9 and MMP-12 levels, spontaneously developed emphysema and secondary polycythemia, and had increased mortality compared with WT mice. Results show cigarette smoke increased pulmonary GM-CSF and AM proliferation, and chronically increased pulmonary GM-CSF recapitulated the cardinal features of DIP, including AM accumulation, emphysema, secondary polycythemia, and increased mortality in mice. These observations suggest pulmonary GM-CSF may be involved in the pathogenesis of DIP.


Subject(s)
Genetic Diseases, Inborn/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung Diseases, Interstitial/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveoli/metabolism , Animals , Emphysema/metabolism , Epithelial Cells/metabolism , Hyperplasia/metabolism , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polycythemia/metabolism , STAT5 Transcription Factor/metabolism , Smoking/metabolism
9.
Nature ; 514(7523): 450-4, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25274301

ABSTRACT

Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor-ß-deficient (Csf2rb(-/-)) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.


Subject(s)
Cell Transplantation , Cytokine Receptor Common beta Subunit/genetics , Genetic Therapy , Lung/cytology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/transplantation , Pulmonary Alveolar Proteinosis/therapy , Animals , Cell Separation , Cytokine Receptor Common beta Subunit/deficiency , Female , Lung/metabolism , Lung/pathology , Male , Mice , Oligonucleotide Array Sequence Analysis , Phenotype , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/pathology , Time Factors
10.
Mol Ther ; 27(9): 1597-1611, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31326401

ABSTRACT

Hereditary pulmonary alveolar proteinosis (PAP) is a genetic lung disease characterized by surfactant accumulation and respiratory failure arising from disruption of GM-CSF signaling. While mutations in either CSF2RA or CSF2RB (encoding GM-CSF receptor α or ß chains, respectively) can cause PAP, α chain mutations are responsible in most patients. Pulmonary macrophage transplantation (PMT) is a promising new cell therapy in development; however, no studies have evaluated this approach for hereditary PAP (hPAP) caused by Csf2ra mutations. Here, we report on the preclinical safety, tolerability, and efficacy of lentiviral-vector (LV)-mediated Csf2ra expression in macrophages and PMT of gene-corrected macrophages (gene-PMT therapy) in Csf2ra gene-ablated (Csf2ra-/-) mice. Gene-PMT therapy resulted in a stable transgene integration and correction of GM-CSF signaling and functions in Csf2ra-/- macrophages in vitro and in vivo and resulted in engraftment and long-term persistence of gene-corrected macrophages in alveoli; restoration of pulmonary surfactant homeostasis; correction of PAP-specific cytologic, histologic, and biomarker abnormalities; and reduced inflammation associated with disease progression in untreated mice. No adverse consequences of gene-PMT therapy in Csf2ra-/- mice were observed. Results demonstrate that gene-PMT therapy of hPAP in Csf2ra-/- mice was highly efficacious, durable, safe, and well tolerated.


Subject(s)
Cell- and Tissue-Based Therapy , Genetic Therapy , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/transplantation , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/therapy , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Animals , Cell Proliferation , Cell- and Tissue-Based Therapy/methods , Disease Models, Animal , Gene Expression , Genetic Therapy/methods , Genetic Vectors/genetics , Immunophenotyping , Lentivirus/genetics , Mice , Mice, Knockout , Pulmonary Alveolar Proteinosis/diagnosis , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction , Transduction, Genetic
11.
Am J Respir Crit Care Med ; 200(10): 1267-1281, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31215789

ABSTRACT

Rationale: Complete tracheal ring deformity (CTRD) is a rare congenital abnormality of unknown etiology characterized by circumferentially continuous or nearly continuous cartilaginous tracheal rings, variable degrees of tracheal stenosis and/or shortening, and/or pulmonary arterial sling anomaly.Objectives: To test the hypothesis that CTRD is caused by inherited or de novo mutations in genes required for normal tracheal development.Methods: CTRD and normal tracheal tissues were examined microscopically to define the tracheal abnormalities present in CTRD. Whole-exome sequencing was performed in children with CTRD and their biological parents ("trio analysis") to identify gene variants in patients with CTRD. Mutations were confirmed by Sanger sequencing, and their potential impact on structure and/or function of encoded proteins was examined using human gene mutation databases. Relevance was further examined by comparison with the effects of targeted deletion of murine homologs important to tracheal development in mice.Measurements and Main Results: The trachealis muscle was absent in all of five patients with CTRD. Exome analysis identified six de novo, three recessive, and multiple compound-heterozygous or rare hemizygous variants in children with CTRD. De novo variants were identified in SHH (Sonic Hedgehog), and inherited variants were identified in HSPG2 (perlecan), ROR2 (receptor tyrosine kinase-like orphan receptor 2), and WLS (Wntless), genes involved in morphogenetic pathways known to mediate tracheoesophageal development in mice.Conclusions: The results of the present study demonstrate that absence of the trachealis muscle is associated with CTRD. Variants predicted to cause disease were identified in genes encoding Hedgehog and Wnt signaling pathway molecules, which are critical to cartilage formation and normal upper airway development in mice.


Subject(s)
Mutation/genetics , Respiratory System Abnormalities/genetics , Trachea/abnormalities , Animals , Cohort Studies , Disease Models, Animal , Humans , Mice , Respiratory System Abnormalities/diagnosis , Respiratory System Abnormalities/surgery
13.
Am J Ind Med ; 59(7): 522-31, 2016 07.
Article in English | MEDLINE | ID: mdl-27219296

ABSTRACT

BACKGROUND: Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. METHODS: For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. RESULTS: Current respirable indium exposure ranged from 0.4 to 108 µg/m(3) and cumulative respirable indium exposure from 0.4 to 923 µg-yr/m(3) . Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 µg-yr/m(3) , reached by 46% of participants. CONCLUSIONS: Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. Am. J. Ind. Med. 59:522-531, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Indium/blood , Lung Diseases/chemically induced , Occupational Exposure/analysis , Tin Compounds/analysis , Adult , Air Pollutants, Occupational/analysis , Biomarkers/analysis , Biomarkers/blood , Environmental Monitoring , Humans , Indium/adverse effects , Lung Diseases/diagnosis , Middle Aged , Occupational Exposure/adverse effects , Occupations , Spirometry , Tin Compounds/adverse effects
14.
Am J Respir Crit Care Med ; 189(2): 183-93, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24279752

ABSTRACT

RATIONALE: In patients with pulmonary alveolar proteinosis (PAP) syndrome, disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling is associated with pathogenic surfactant accumulation from impaired clearance in alveolar macrophages. OBJECTIVES: The aim of this study was to overcome these barriers by using monocyte-derived induced pluripotent stem (iPS) cells to recapitulate disease-specific and normal macrophages. METHODS: We created iPS cells from two children with hereditary PAP (hPAP) caused by recessive CSF2RA(R217X) mutations and three normal people, differentiated them into macrophages (hPAP-iPS-Mφs and NL-iPS-Mφs, respectively), and evaluated macrophage functions with and without gene-correction to restore GM-CSF signaling in hPAP-iPS-Mφs. MEASUREMENTS AND MAIN RESULTS: Both hPAP and normal iPS cells had human embryonic stem cell-like morphology, expressed pluripotency markers, formed teratomas in vivo, had a normal karyotype, retained and expressed mutant or normal CSF2RA genes, respectively, and could be differentiated into macrophages with the typical morphology and phenotypic markers. Compared with normal, hPAP-iPS-Mφs had impaired GM-CSF receptor signaling and reduced GM-CSF-dependent gene expression, GM-CSF- but not M-CSF-dependent cell proliferation, surfactant clearance, and proinflammatory cytokine secretion. Restoration of GM-CSF receptor signaling corrected the surfactant clearance abnormality in hPAP-iPS-Mφs. CONCLUSIONS: We used patient-specific iPS cells to accurately reproduce the molecular and cellular defects of alveolar macrophages that drive the pathogenesis of PAP in more than 90% of patients. These results demonstrate the critical role of GM-CSF signaling in surfactant homeostasis and PAP pathogenesis in humans and have therapeutic implications for hPAP.


Subject(s)
Genetic Diseases, X-Linked/physiopathology , Induced Pluripotent Stem Cells/metabolism , Pulmonary Alveolar Proteinosis/physiopathology , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Case-Control Studies , Cell Differentiation , Cells, Cultured , Child , Gene Transfer Techniques , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Humans , Macrophages, Alveolar/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Signal Transduction
15.
Mol Ther Methods Clin Dev ; 32(2): 101213, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38596536

ABSTRACT

Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in CSF2RA/B (and murine homologs). We conducted a toxicology study of PMT of Csf2ra gene-corrected macrophages (mGM-Rα+Mϕs) or saline-control intervention in Csf2raKO or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated Csf2ra cDNA transfer restored GM-CSF signaling in mGM-Rα+Mϕs. Following PMT, mGM-Rα+Mϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-Rα+Mϕs, respectively) and only in Csf2raKO mice but not in WT mice. PMT reduced lung disease severity in Csf2raKO mice. Results indicate PMT of mGM-Rα+Mϕs was safe, well tolerated, and therapeutically efficacious in Csf2raKO mice, and established a no adverse effect level and 10-fold safety margin.

16.
J Biol Chem ; 286(17): 14932-40, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21343299

ABSTRACT

Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of insults. In this study, we tested the hypothesis that KGF augments pulmonary host defense. We found that a single dose of intrapulmonary KGF enhanced the clearance of Escherichia coli or Pseudomonas aeruginosa instilled into the lungs 24 h later. KGF augmented the recruitment, phagocytic activity, and oxidant responses of alveolar macrophages, including lipopolysaccharide-stimulated nitric oxide release and zymosan-induced superoxide production. Less robust alveolar macrophage recruitment and activation was observed in mice treated with intraperitoneal KGF. KGF treatment was associated with increased levels of MIP1γ, LIX, VCAM, IGFBP-6, and GM-CSF in the bronchoalveolar lavage fluid. Of these, only GM-CSF recapitulated in vitro the macrophage activation phenotype seen in the KGF-treated animals. The KGF-stimulated increase in GM-CSF levels in lung tissue and alveolar lining fluid arose from the epithelium, peaked within 1 h, and was associated with STAT5 phosphorylation in alveolar macrophages, consistent with epithelium-driven paracrine activation of macrophage signaling through the KGF receptor/GM-CSF/GM-CSF receptor/JAK-STAT axis. Enhanced bacterial clearance did not occur in response to KGF administration in GM-CSF(-/-) mice, or in mice treated with a neutralizing antibody to GM-CSF. We conclude that KGF enhances alveolar host defense through GM-CSF-stimulated macrophage activation. KGF administration may constitute a promising therapeutic strategy to augment innate immune defenses in refractory pulmonary infections.


Subject(s)
Fibroblast Growth Factor 7/pharmacology , Immunity, Innate , Lung/immunology , Macrophage Activation/drug effects , Paracrine Communication/immunology , Animals , Epithelium/immunology , Fibroblast Growth Factor 7/administration & dosage , Fibroblast Growth Factor 7/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Activation/immunology , Macrophages, Alveolar/immunology , Mice , Mice, Knockout
17.
J Immunol Methods ; 511: 113366, 2022 12.
Article in English | MEDLINE | ID: mdl-36198356

ABSTRACT

Granulocyte/macrophage colony-stimulating factor autoantibodies (GMAbs) mediate the pathogenesis of autoimmune pulmonary alveolar proteinosis (autoimmune PAP) and their quantification in serum by enzyme-linked immunosorbent assay (ELISA) - the serum GMAb test - is the 'gold standard' for diagnosis of autoimmune PAP. Because GMAbs are high in autoimmune PAP and low or undetectable in healthy people, we hypothesized that the ELISA could be adapted for evaluation of blood obtained from the fingertip using a dried blood spot card (DBSC) for specimen collection. Here, we report development of such a method - the DBSC GMAb test - and evaluate its ability to measure GMAb concentration in blood and to diagnose autoimmune PAP. Fresh, heparinized whole blood was obtained from 60 autoimmune PAP patients and 19 healthy people and used to measure the GMAb concentration in blood (by the DBSC GMAb test). After optimization, the DBSC GMAb test was evaluated for accuracy, precision, reliability, sensitivity, specificity, and ruggedness. The coefficient of variation among repeated measurements was low with regard to well-to-well, plate-to-plate, day-to-day, and inter-operator variation, and results were unaffected by exposure of prepared DBSC specimens to a wide range of temperatures (from -80 °C to 65 °C), repeated freeze-thaw cycles, or storage for up to 2.5 months before testing. The limit of blank (LoB), limit of detection (LoD), and lower limit of quantification (LLoQ), were 0.01, 0.21, and 3.5 µg/ml of GMAb in the blood, respectively. Receiver operating curve characteristic analysis identified 2.7 µg/ml as the optimal GMAb concentration cutoff value to distinguish autoimmune PAP from healthy people. This cutoff value was less than the LLoQ and the ranges of GMAb results for autoimmune PAP patients and healthy people were widely separated (median (interquartile range): 22.6 (13.3-43.8) and 0.23 (0.20-0.30) µg/ml, respectively). Consequently, the LLoQ is recommended as the lower limit of the range indicating a positive test result (i.e., that autoimmune PAP is present); lower values indicate a negative test result (i.e., autoimmune PAP is not present). Among the 30 autoimmune PAP patients and 19 healthy people evaluated, the sensitivity and specificity of the DBSC GMAb test were both 100% for a diagnosis of autoimmune PAP. Results demonstrate the DBSC GMAb test reliably measures GMAbs in blood and performs well in the diagnosis of autoimmune PAP.


Subject(s)
Pulmonary Alveolar Proteinosis , Humans , Pulmonary Alveolar Proteinosis/diagnosis , Reproducibility of Results
18.
Mitochondrion ; 62: 85-101, 2022 01.
Article in English | MEDLINE | ID: mdl-34740864

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts pleiotropic effects on macrophages and is required for self-renewal but the mechanisms responsible are unknown. Using mouse models with disrupted GM-CSF signaling, we show GM-CSF is critical for mitochondrial turnover, functions, and integrity. GM-CSF signaling is essential for fatty acid ß-oxidation and markedly increased tricarboxylic acid cycle activity, oxidative phosphorylation, and ATP production. GM-CSF also regulated cytosolic pathways including glycolysis, pentose phosphate pathway, and amino acid synthesis. We conclude that GM-CSF regulates macrophages in part through a critical role in maintaining mitochondria, which are necessary for cellular metabolism as well as proliferation and self-renewal.


Subject(s)
Cell Proliferation/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/physiology , Mitochondria/metabolism , Animals , Bone Marrow Cells , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Male , Mice , Mice, Knockout
19.
Blood ; 113(11): 2547-56, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19282464

ABSTRACT

High levels of granulocyte/macrophage-colony-stimulating factor (GM-CSF) autoantibodies are thought to cause pulmonary alveolar proteinosis (PAP), a rare syndrome characterized by myeloid dysfunction resulting in pulmonary surfactant accumulation and respiratory failure. Paradoxically, GM-CSF autoantibodies have been reported to occur rarely in healthy people and routinely in pharmaceutical intravenous immunoglobulin (IVIG) purified from serum pooled from healthy subjects. These findings suggest that either GM-CSF autoantibodies are normally present in healthy people at low levels that are difficult to detect or that serum pooled for IVIG purification may include asymptomatic persons with high levels of GM-CSF autoantibodies. Using several experimental approaches, GM-CSF autoantibodies were detected in all healthy subjects evaluated (n = 72) at low levels sufficient to rheostatically regulate multiple myeloid functions. Serum GM-CSF was more abundant than previously reported, but more than 99% was bound and neutralized by GM-CSF autoantibody. The critical threshold of GM-CSF autoantibodies associated with the development of PAP was determined. Results demonstrate that free serum GM-CSF is tightly maintained at low levels, identify a novel potential mechanism of innate immune regulation, help define the therapeutic window for potential clinical use of GM-CSF autoantibodies to treat inflammatory and autoimmune diseases, and have implications for the pathogenesis of PAP.


Subject(s)
Autoantibodies/blood , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Health , Myeloid Cells/immunology , Myeloid Cells/physiology , Adult , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/metabolism , Autoantibodies/metabolism , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunity, Innate/physiology , Male , Models, Biological , Pulmonary Alveolar Proteinosis/blood , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/metabolism , Signal Transduction/immunology , Young Adult
20.
Am J Respir Crit Care Med ; 182(10): 1292-304, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20622029

ABSTRACT

RATIONALE: We identified a 6-year-old girl with pulmonary alveolar proteinosis (PAP), impaired granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor function, and increased GM-CSF. OBJECTIVES: Increased serum GM-CSF may be useful to identify individuals with PAP caused by GM-CSF receptor dysfunction. METHODS: We screened 187 patients referred to us for measurement of GM-CSF autoantibodies to diagnose autoimmune PAP. Five were children with PAP and increased serum GM-CSF but without GM-CSF autoantibodies or any disease causing secondary PAP; all were studied with family members, subsequently identified patients, and controls. MEASUREMENT AND MAIN RESULTS: Eight children (seven female, one male) were identified with PAP caused by recessive CSF2RA mutations. Six presented with progressive dyspnea of insidious onset at 4.8 ± 1.6 years and two were asymptomatic at ages 5 and 8 years. Radiologic and histopathologic manifestations were similar to those of autoimmune PAP. Molecular analysis demonstrated that GM-CSF signaling was absent in six and severely reduced in two patients. The GM-CSF receptor ß chain was detected in all patients, whereas the α chain was absent in six and abnormal in two, paralleling the GM-CSF signaling defects. Genetic analysis revealed multiple distinct CSF2RA abnormalities, including missense, duplication, frameshift, and nonsense mutations; exon and gene deletion; and cryptic alternative splicing. All symptomatic patients responded well to whole-lung lavage therapy. CONCLUSIONS: CSF2RA mutations cause a genetic form of PAP presenting as insidious, progressive dyspnea in children that can be diagnosed by a combination of characteristic radiologic findings and blood tests and treated successfully by whole-lung lavage.


Subject(s)
Genetic Diseases, Inborn/etiology , Pulmonary Alveolar Proteinosis/genetics , Age of Onset , Autoantibodies/physiology , Child , Child, Preschool , Disease Progression , Dyspnea/etiology , Female , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Genetic Markers/genetics , Genotype , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Humans , Infant , Lung/pathology , Male , Mutation , Pedigree , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Alveolar Proteinosis/therapy , Receptors, Granulocyte Colony-Stimulating Factor/blood , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/physiology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL