Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
PLoS Pathog ; 17(6): e1009632, 2021 06.
Article in English | MEDLINE | ID: mdl-34061907

ABSTRACT

Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue. Our results show that HIV virions rapidly disseminate throughout the colon two hours after exposure. The presence of dIgA resulted in an increase in virions and penetration depth in the transverse colon. Moreover, virions were found in the mesenteric lymph nodes two hours after viral exposure, and the presence of dIgA led to an increase in virions in mesenteric lymph nodes. Taken together, these technologies enable in vivo and in situ visualization of antibody-virus interactions and detailed investigations of early events in HIV infection.


Subject(s)
Colon/virology , HIV Antibodies , HIV Infections , Immunoglobulin A, Secretory , Mucous Membrane/virology , Animals , Macaca mulatta , Mucous Membrane/immunology , Positron Emission Tomography Computed Tomography , Rectum
2.
PLoS Pathog ; 17(11): e1009855, 2021 11.
Article in English | MEDLINE | ID: mdl-34793582

ABSTRACT

Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection.


Subject(s)
Gastrointestinal Tract/virology , HIV Infections/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/isolation & purification , T-Lymphocytes/virology , Viral Load , Animals , Animals, Newborn , Copper Radioisotopes/analysis , HIV-1/isolation & purification , Humans , Macaca mulatta , Positron Emission Tomography Computed Tomography
3.
J Immunol ; 207(2): 505-511, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34162723

ABSTRACT

i.v. injected Abs have demonstrated protection against simian HIV infection in rhesus macaques, paving the way for the Antibody Mediated Prevention trial in which at-risk individuals for HIV received an i.v. infusion of the HIV broadly neutralizing Ab VRC01. However, the time needed for these Abs to fully distribute and elicit protection at mucosal sites is still unknown. In this study, we interrogate how long it takes for Abs to achieve peak anatomical levels at the vaginal surface following i.v. injection. Fluorescently labeled VRC01 and/or Gamunex-C were i.v. injected into 24 female rhesus macaques (Macaca mulatta) with vaginal tissues and plasma acquired up to 2 wk postinjection. We found that Ab delivery to the vaginal mucosa occurs in two phases. The first phase involves delivery to the submucosa, occurring within 24 h and persisting beyond 1 wk. The second phase is the delivery through the stratified squamous epithelium, needing ∼1 wk to saturate the stratum corneum. This study has important implications for the efficacy of immunoprophylaxis targeting pathogens at the mucosa.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Female , HIV Antibodies , HIV-1/immunology , Humans , Immunoglobulins, Intravenous , Macaca mulatta , Simian Immunodeficiency Virus/immunology
4.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33177204

ABSTRACT

Exposure of the genital mucosa to a genetically diverse viral swarm from the donor HIV-1 can result in breakthrough and systemic infection by a single transmitted/founder (TF) virus in the recipient. The highly diverse HIV-1 envelope (Env) in this inoculating viral swarm may have a critical role in transmission and subsequent immune response. Thus, chronic (Envchronic) and acute (Envacute) Env chimeric HIV-1 were tested using multivirus competition assays in human mucosal penile and cervical tissues. Viral competition analysis revealed that Envchronic viruses resided and replicated mainly in the tissue, while Envacute viruses penetrated the human tissue and established infection of CD4+ T cells more efficiently. Analysis of the replication fitness, as tested in peripheral blood mononuclear cells (PBMCs), showed similar replication fitness of Envacute and Envchronic viruses, which did not correlate with transmission fitness in penile tissue. Further, we observed that chimeric Env viruses with higher replication in genital mucosal tissue (chronic Env viruses) had higher binding affinity to C-type lectins. Data presented herein suggest that the inoculating HIV-1 may be sequestered in the genital mucosal tissue (represented by chronic Env HIV-1) but that a single HIV-1 clone (e.g., acute Env HIV-1) can escape this trapped replication for systemic infection.IMPORTANCE During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described (K. Klein et al., PLoS Pathog 14:e1006754, https://doi.org/10.1371/journal.ppat.1006754), and the mechanisms involved in this selection process have not been elucidated. However, understanding mucosal restriction is of the utmost importance for understanding dynamics of infections and for designing focused vaccines. Using our human penile and cervical mucosal tissue models for mixed HIV infections, we provide evidence that HIV-1 from acute/early infection, compared to that from chronic infection, can more efficiently traverse the mucosal epithelium and be transmitted to T cells, suggesting higher transmission fitness. This study focused on the role of the HIV-1 envelope in transmission and provides strong evidence that HIV transmission may involve breaking the mucosal lectin trap.


Subject(s)
Cervix Uteri/virology , HIV Infections/transmission , HIV-1/genetics , Leukocytes, Mononuclear/virology , Mucous Membrane/virology , Penis/virology , Viral Proteins/genetics , Female , HIV Infections/virology , HIV-1/classification , HIV-1/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Male , RNA, Viral/analysis , RNA, Viral/genetics
5.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31776284

ABSTRACT

We have recently shown that MUC16, a component of the glycocalyx of some mucosal barriers, has elevated binding to the G0 glycoform of the Fc portion of IgG. Therefore, IgG from patients chronically infected with human immunodeficiency virus (HIV), who typically exhibit increased amounts of G0 glycoforms, showed increased MUC16 binding compared to uninfected controls. Using the rhesus macaque simian immunodeficiency virus SIVmac251 model, we can compare plasma antibodies before and after chronic infection. We find increased binding of IgG to MUC16 after chronic SIV infection. Antibodies isolated for tight association with MUC16 (MUC16-eluted antibodies) show reduced FcγR engagement and antibody-dependent cellular cytotoxicity (ADCC) activity. The glycosylation profile of these IgGs was consistent with a decrease in FcγR engagement and subsequent ADCC effector function, as they contain a decrease in afucosylated bisecting glycoforms that preferentially bind FcγRs. Testing of the SIV antigen specificity of IgG from SIV-infected macaques revealed that the MUC16-eluted antibodies were enriched for certain specific epitopes, including regions of gp41 and gp120. This enrichment of specific antigen responses for fucosylated bisecting glycoforms and the subsequent association with MUC16 suggests that the immune response has the potential to direct specific epitope responses to localize to the glycocalyx through interaction with this specific mucin.IMPORTANCE Understanding how antibodies are distributed in the mucosal environment is valuable for developing a vaccine to block HIV infection. Here, we study an IgG binding activity in MUC16, potentially representing a new IgG effector function that would concentrate certain antibodies within the glycocalyx to trap pathogens before they can reach the underlying columnar epithelial barriers. These studies reveal that rhesus macaque IgG responses during chronic SIV infection generate increased antibodies that bind MUC16, and interestingly, these MUC16-tethered antibodies are enriched for binding to certain antigens. Therefore, it may be possible to direct HIV vaccine-generated responses to associate with MUC16 and enhance the antibody's ability to mediate immune exclusion by trapping virions within the glycocalyx and preventing the virus from reaching immune target cells within the mucosa. This concept will ultimately have to be tested in the rhesus macaque model, which is shown here to have MUC16-targeted antigen responses.


Subject(s)
CA-125 Antigen/immunology , Epitopes/immunology , Immunoglobulin G/immunology , Membrane Proteins/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Humans , Immunoglobulin G/blood , Mucins/immunology
6.
PLoS Pathog ; 12(9): e1005885, 2016 09.
Article in English | MEDLINE | ID: mdl-27658293

ABSTRACT

Currently, there are mounting data suggesting that HIV-1 acquisition in women can be affected by the use of certain hormonal contraceptives. However, in non-human primate models, endogenous or exogenous progestin-dominant states are shown to increase acquisition. To gain mechanistic insights into this increased acquisition, we studied how mucosal barrier function and CD4+ T-cell and CD68+ macrophage density and localization changed in the presence of natural progestins or after injection with high-dose DMPA. The presence of natural or injected progestins increased virus penetration of the columnar epithelium and the infiltration of susceptible cells into a thinned squamous epithelium of the vaginal vault, increasing the likelihood of potential virus interactions with target cells. These data suggest that increasing either endogenous or exogenous progestin can alter female reproductive tract barrier properties and provide plausible mechanisms for increased HIV-1 acquisition risk in the presence of increased progestin levels.


Subject(s)
Host-Pathogen Interactions/drug effects , Macrophages/drug effects , Mucous Membrane/drug effects , Progestins/therapeutic use , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/drug effects , Vagina/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cervix Uteri/drug effects , Cervix Uteri/immunology , Cervix Uteri/metabolism , Cervix Uteri/virology , Delayed-Action Preparations , Female , Injections, Intramuscular , Lymphocyte Activation/drug effects , Macaca mulatta , Macaca nemestrina , Macrophage Activation/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/therapeutic use , Menstrual Cycle , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/virology , Progestins/administration & dosage , Progestins/metabolism , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Vagina/immunology , Vagina/metabolism , Vagina/virology , Virus Internalization/drug effects
7.
J Virol ; 89(10): 5569-80, 2015 May.
Article in English | MEDLINE | ID: mdl-25740984

ABSTRACT

UNLABELLED: The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE: The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal tissues. SEVI decreases HIV-1 penetration of squamous epithelial barriers in humans and macaques. At the mucus-coated columnar epithelial barrier, the HIV-1/SEVI interaction is disrupted. These observations suggest that SEVI may not play a significant stimulatory role in the efficiency of male-to-female sexual transmission of HIV.


Subject(s)
HIV Infections/transmission , HIV Infections/virology , HIV-1/physiology , HIV-1/pathogenicity , Peptide Fragments/physiology , Protein Tyrosine Phosphatases/physiology , Semen/virology , Vagina/virology , Animals , Cervix Uteri/virology , Female , HIV-1/genetics , Host-Pathogen Interactions , Humans , Macaca mulatta , Male , Mucous Membrane/virology , Peptide Fragments/chemistry , Protein Tyrosine Phosphatases/chemistry , Semen/physiology , Virulence
8.
Biol Reprod ; 92(3): 68, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588510

ABSTRACT

Currently, whether hormonal contraceptives affect male to female human immunodeficiency virus (HIV) transmission is being debated. In this study, we investigated whether the use of progesterone-based intrauterine devices (pIUDs) is associated with a thinning effect on the ectocervical squamous epithelium, down-regulation of epithelial junction proteins, and/or alteration of HIV target cell distribution in the human ectocervix. Ectocervical tissue biopsies from healthy premenopausal volunteers using pIUDs were collected and compared to biopsies obtained from two control groups, namely women using combined oral contraceptives (COCs) or who do not use hormonal contraceptives. In situ staining and image analysis were used to measure epithelial thickness and the presence of HIV receptors in tissue biopsies. Messenger RNA levels of epithelial junction markers were measured by quantitative PCR. The epithelial thickness displayed by women in the pIUD group was similar to those in the COC group, but significantly thinner as compared to women in the no hormonal contraceptive group. The thinner epithelial layer of the pIUD group was specific to the apical layer of the ectocervix. Furthermore, the pIUD group expressed significantly lower levels of the tight junction marker ZO-1 within the epithelium as compared to the COC group. Similar expression levels of HIV receptors and coreceptors CD4, CCR5, DC-SIGN, and Langerin were observed in the three study groups. Thus, women using pIUD displayed a thinner apical layer of the ectocervical epithelium and reduced ZO-1 expression as compared to control groups. These data suggest that pIUD use may weaken the ectocervical epithelial barrier against invading pathogens, including HIV.


Subject(s)
Cervix Uteri/metabolism , Cervix Uteri/pathology , Contraceptives, Oral, Combined , Intrauterine Devices, Medicated , RNA, Messenger/metabolism , Zonula Occludens-1 Protein/metabolism , Adolescent , Adult , Antigens, CD/metabolism , Biopsy , CD4 Antigens/metabolism , Case-Control Studies , Disease Susceptibility , Epithelium/metabolism , Epithelium/pathology , Female , HIV Infections , Humans , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, CCR5/metabolism , Receptors, HIV/metabolism , Young Adult , Zonula Occludens-1 Protein/genetics
9.
J Virol ; 87(21): 11388-400, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966398

ABSTRACT

Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4(+) target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection.


Subject(s)
Genitalia, Female/virology , HIV-1/pathogenicity , Host-Pathogen Interactions , Mucous Membrane/virology , Reproductive Tract Infections/virology , Animals , Epithelium/immunology , Epithelium/virology , Female , Genitalia, Female/immunology , HIV-1/immunology , Humans , Macaca mulatta , Models, Theoretical , Mucous Membrane/immunology , Organ Culture Techniques , Reproductive Tract Infections/immunology , Viral Load
10.
Methods Mol Biol ; 2440: 143-164, 2022.
Article in English | MEDLINE | ID: mdl-35218538

ABSTRACT

Understanding the interplay between commensals, pathogens, and immune cells in the skin and mucosal tissues is critical to improve prevention and treatment of a myriad of diseases. While high-parameter flow cytometry is the current gold standard for immune cell characterization in blood, it is less suitable for mucosal tissues, where structural and spatial information is lost during tissue disaggregation. Immunofluorescence overcomes this limitation, serving as an excellent alternative for studying immune cells in mucosal tissues. However, the use of immunofluorescent microscopy for analyzing clinical samples is hampered by a lack of high-throughput quantitative analysis techniques. In this chapter, we describe methods for sectioning, staining, and imaging whole sections of human foreskin tissue. We also describe methods to automate immune cell quantification from immunofluorescent images, including image preprocessing and methods to quantify both circular and irregularly shaped immune cells using open-source software.


Subject(s)
Mucous Membrane , Software , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Staining and Labeling
11.
bioRxiv ; 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35262081

ABSTRACT

The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.

12.
Res Sq ; 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35411346

ABSTRACT

The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.

13.
Front Cell Infect Microbiol ; 11: 753444, 2021.
Article in English | MEDLINE | ID: mdl-34869063

ABSTRACT

SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.


Subject(s)
COVID-19 , Viral Envelope Proteins , Animals , Antibodies, Neutralizing , Humans , Macaca mulatta , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
Front Immunol ; 12: 810047, 2021.
Article in English | MEDLINE | ID: mdl-35003140

ABSTRACT

Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread in vivo is needed. We developed a novel, fluorescently labeled, antibody-based in vivo probe system using the anti-spike monoclonal antibody CR3022 and demonstrated that it could successfully identify sites of SARS-CoV-2 infection in a rhesus macaque model of COVID-19. Our results showed that the fluorescent signal from our antibody-based probe could differentiate whole lungs of macaques infected for 9 days from those infected for 2 or 3 days. Additionally, the probe signal corroborated the frequency and density of infected cells in individual tissue blocks from infected macaques. These results provide proof of concept for the use of in vivo antibody-based probes to study SARS-CoV-2 infection dynamics in rhesus macaques.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Fluorescent Antibody Technique/methods , SARS-CoV-2/growth & development , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Macaca mulatta , Proof of Concept Study , Spike Glycoprotein, Coronavirus/immunology , Viral Load/methods
15.
Mucosal Immunol ; 13(1): 118-127, 2020 01.
Article in English | MEDLINE | ID: mdl-31619762

ABSTRACT

We compared outer and inner foreskin tissue from adolescent males undergoing medical male circumcision to better understand signals that increase HIV target cell availability in the foreskin. We measured chemokine gene expression and the impact of sexually transmitted infections (STIs) on the density and location of T and Langerhans cells. Chemokine C-C ligand 27 (CCL27) was expressed 6.94-fold higher in the inner foreskin when compared with the outer foreskin. We show that the density of CD4+CCR5+ cells/mm2 was higher in the epithelium of the inner foreskin, regardless of STI status, in parallel with higher CCL27 gene expression. In the presence of STIs, there were higher numbers of CD4+CCR5+ cells/mm2 cells in the sub-stratum of the outer and inner foreskin with concurrently higher number of CD207+ Langerhans cells (LC) in both tissues, with the latter cells being closer to the keratin surface of the outer FS in the presence of an STI. When we tested the ability of exogenous CCL27 to induce T-cell migration in foreskin tissue, CD4 + T cells were able to relocate to the inner foreskin epithelium in response. We provide novel insight into the impact CCL27 and STIs on immune and HIV-1 target cell changes in the foreskin.


Subject(s)
Bacterial Infections/immunology , CD4-Positive T-Lymphocytes/immunology , Chemokine CCL27/metabolism , Foreskin/metabolism , HIV Infections/immunology , HIV-1/physiology , Langerhans Cells/immunology , Adolescent , Adult , Bacterial Infections/therapy , Cell Movement , Chemokine CCL27/genetics , Circumcision, Male , Foreskin/pathology , Gene Expression Regulation , HIV Infections/therapy , Humans , Male , Sexually Transmitted Diseases , South Africa , Young Adult
16.
Curr Immunol Rev ; 15(1): 4-13, 2019.
Article in English | MEDLINE | ID: mdl-31853241

ABSTRACT

Most new HIV infections, over 80%, occur through sexual transmission. During sexual transmission, the virus must bypass specific female and male reproductive tract anatomical barriers to encounter viable target cells. Understanding the generally efficient ability of these barrier to exclude HIV and the precise mechanisms of HIV translocation beyond these genital barriers is essential for vaccine and novel therapeutic development. In this review, we explore the mucosal, barriers of cervico-vaginal and penile tissues that comprise the female and male reproductive tracts. The unique cellular assemblies f the squamous and columnar epithelium are illustrate highlighting their structure and function. Each anatomical tissue offers a unique barrier to virus entry in healthy individuals. Unfortunately barrier dysfunction can lead to HIV transmission. How these diverse mucosal barriers have the potential to fail is considered, highlighting those anatomical areas that are postulated to offer a weaker barrier and are; therefore, more susceptible to viral ingress. Risk factors, such as sexually transmitted infections, microbiome dysbiosis, and high progestin environments are also associated with increased acquisition of HIV. How these states may affect the integrity of mucosal barriers leading to HIV acquisition are discussed suggesting mechanisms of transmission and revealing potential targets for intervention.

17.
J Immunol Methods ; 450: 66-72, 2017 11.
Article in English | MEDLINE | ID: mdl-28780040

ABSTRACT

The use of therapeutic antibodies, delivered by intravenous (IV) instillation, is a rapidly expanding area of biomedical treatment for a variety of conditions. However, little is known about how the antibodies are anatomically distributed following infusion and the underlying mechanism mediating therapeutic antibody distribution to specific anatomical sites remains to be elucidated. Current efforts utilize low resolution and sensitivity methods such as ELISA and indirect labeling imaging techniques, which often leads to high background and difficulty in assessing biodistribution. Here, using the in vivo non-human primate model, we demonstrate that it is possible to utilize the fluorophores Cy5 and Cy3 directly conjugated to antibodies for direct visualization and quantification of passively transferred antibodies in plasma, tissue, and in mucosal secretions. Antibodies were formulated with 1-2 fluorophores per antibody to minimally influence antibody function. Fluorophore conjugated Gamunex-C (pooled human IgG) were tested for binding to protein A, via surface plasmon resonance, and showed similar levels of binding when compared to unlabeled Gamunex-C. In order to assess the effect fluorophore labeling has on turnover and localization, rhesus macaques were IV infused with either labeled or unlabeled Gamunex-C. Plasma, vaginal Weck-Cel fluid, cervicovaginal mucus, and vaginal/rectal tissue biopsies were collected up to 8weeks. Similar turnover and biodistribution was observed between labeled and unlabeled antibodies, showing that the labeling process did not have an obvious deleterious effect on localization or turnover. Cy5 and Cy3 labeled antibodies were readily detected in the same pattern regardless of fluorophore. Tissue distribution was measured in macaque vaginal and rectal biopsies. The labeled antibody in macaque biopsies was found to have similar biodistribution pattern to endogenous antibodies in macaque and human tissues. In the vaginal and rectal mucosa, endogenous and infused antibodies were found primarily within the lamina propria. In the mucosal squamous epithelium of the vaginal vault, significant antibody was also observed in a striated pattern in the superficial, nonviable, stratum corneum. Endogenous antibody distribution in both human and macaque squamous tissues exhibited a similar pattern as seen with the labeled and unlabeled antibodies. This proof-of-principle study reveals that the labeled antibody is stable and physiologically similar relative to endogenous antibody setting the stage for future work to better understand the mechanisms of how antibodies reach unique anatomical sites. Direct visualization of fluorophore-conjugated antibodies following passive infusion can be utilized to assess the kinetics of biodistribution of infused antibodies and may be a useful approach to monitor and predict efficacy of therapeutic antibodies.


Subject(s)
Carbocyanines/metabolism , Fluorescent Antibody Technique , Fluorescent Dyes/metabolism , Immunoglobulins, Intravenous/blood , Microscopy, Fluorescence , Animals , Carbocyanines/administration & dosage , Carbocyanines/chemistry , Cervix Mucus/metabolism , Drug Stability , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/chemistry , Immunoglobulins, Intravenous/pharmacokinetics , Infusions, Intravenous , Macaca mulatta , Models, Animal , Mucous Membrane/metabolism , Plasma/metabolism , Protein Stability , Rectum/metabolism , Surface Plasmon Resonance , Tissue Distribution , Vagina/metabolism
18.
PLoS One ; 11(5): e0154656, 2016.
Article in English | MEDLINE | ID: mdl-27164006

ABSTRACT

The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the initial events in mucosal transmission and dissemination warrants further mechanistic studies.


Subject(s)
Antigens, CD/immunology , Genitalia, Female/immunology , Genitalia, Male/immunology , Receptors, Fc/immunology , Receptors, IgG/immunology , Rectum/immunology , AIDS Vaccines/administration & dosage , Adult , Antigens, CD/genetics , Blood Cells/cytology , Blood Cells/immunology , Clinical Trials as Topic , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression , Gene Expression Profiling , Genitalia, Female/cytology , Genitalia, Male/cytology , HIV Antibodies/biosynthesis , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/transmission , HIV Infections/virology , HIV-1/immunology , Humans , Immunity, Humoral , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Male , Monocytes/cytology , Monocytes/immunology , Mucous Membrane/cytology , Mucous Membrane/immunology , Organ Specificity , Receptors, Fc/genetics , Receptors, IgG/genetics , Rectum/cytology
19.
Curr Opin HIV AIDS ; 9(3): 271-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24675069

ABSTRACT

PURPOSE OF REVIEW: Recently, studies have suggested a role for Fc-mediated effector functions in viremic control of HIV infection and blocking HIV acquisition. Although progress has been made in identifying the mechanisms responsible for regulating various innate functions, minimal research has been performed concerning macrophage-specific phagocytosis and antiviral effects. RECENT FINDINGS: Of what research has been performed, phagocytosis has been identified as a possible key player in antiviral functions during initial infection, offering protection at the HIV mucosal entry sites. Recent research has also highlighted the importance of various antibody characteristics, such as polymorphism, immunoglobulin subclass, and glycan structure on those effector functions modulated. Lastly, despite recent failures in HIV vaccine trials, the RV144 Thai trial illustrated 31.2% efficacy against heterosexual infection. When these protective results were looked at in depth, vaccine-induced antibodies were increased when infection rates decreased, suggesting that HIV might be neutralized through receptor-mediated effector mechanisms, including phagocytosis. Importantly, these data instilled the awareness that the identification of protective immune correlates is imperative to successfully develop vaccine strategies. SUMMARY: In this review, we address the antiviral mechanisms of phagocytosis, focusing on complement-mediated phagocytosis and Fc-receptor-mediated antibody-dependent cellular phagocytosis in relation to HIV transmission and infection.


Subject(s)
HIV Infections/immunology , Phagocytosis/immunology , HIV Antibodies/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL