Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Publication year range
1.
Eur. j. anat ; 20(2): 113-120, abr. 2016. ilus
Article in English | IBECS (Spain) | ID: ibc-152867

ABSTRACT

Prenatal and one-two month postnatal testosterone influences human neural and behavioural development, since the prenatal and one-two month postnatal hormone environment clearly contributes to the development of sex-related variation in human behaviour, and plays a role in the development of the sexual brain and individual differences in behaviour within each sex, as well as differences between the sexes. Olfactory system development, brain sexual maturation and sexual behaviour in man and animals are closely related. Kallmann syndrome (KS) is a genetic disorder which combines hypogonadotropic hypogonadism and anosmia. Hypogonadism is characterized by the absence or reduced levels of gonadotropinreleasing hormone, and anosmia is due to aplasia of the olfactory bulb. The overlap between the formation of the olfactory system and the migration of neurons that synthesize the gonadotropinreleasing hormone (GnRH) is common knowledge. GnRH neurons migrate from the medial portion of the nasal epithelium through the olfactory nerves and the main olfactory bulb to the anterior hypothalamus. Furthermore, the clinical manifestations of KS are: anosmia, the absence of puberty, and modifications in sexual behaviour. The structures responsible for the maturation of the main and accessory olfactory systems, the sexual differentiation of the brain and its relationship with clinical manifestations and sexual behaviour in Kallmann syndrome are analyzed in this review. The importance of the treatment of KS at early ages is suggested in order to improve brain sexual development and its clinical and sexual behaviour manifestations


No disponible


Subject(s)
Humans , Kallmann Syndrome/physiopathology , Sexual Development/physiology , Disorders of Sex Development/prevention & control , Sexual Behavior , Sex Differentiation/physiology , Olfactory Bulb/embryology , Hypothalamus, Anterior/embryology , Amygdala/embryology
2.
Eur. j. anat ; 19(2): 125-129, abr. 2015. ilus, graf
Article in English | IBECS (Spain) | ID: ibc-141201

ABSTRACT

Hydrocephalus is an accumulation of cerebrospinal fluid (CSF) with dilatation of brain ventricles which can be either communicating or non-communicating. Multiple pathophysiological mechanisms underlie the appearance of hydrocephalus, which has many different causes including birth defects, brain hemorrhage, infection, meningitis, tumor, or head injury. The choroid plexuses (ChP) are circumventricular structures closely related to the above-mentioned pathophysiological mechanisms of the CSF, and aquaporin-1 (AQP1) is the water channel directly implicated in CSF production. Our studies with hydrocephalic rats revealed an increase and redistribution of AQP1 in the ChP, with AQP1 being expressed not only in the cell apical pole, but also in the cell basal pole and in the stroma. The immunohistochemical changes observed in both communicating and non-communicating hydrocephalus suggest a variation in the efficiency of the cells of the ChP, where AQP1 could perform both CSF production and reabsorption in order to delay ventricular dilatation


No disponible


Subject(s)
Animals , Rats , Aquaporin 1 , Hydrocephalus/physiopathology , Choroid Plexus/ultrastructure , Disease Models, Animal
3.
Eur. j. anat ; 13(3): 111-115, dic. 2009. ilus
Article in English | IBECS (Spain) | ID: ibc-107642

ABSTRACT

The subcommissural organ (SCO) releases glycoproteins into the ventricular cerebrospinal fluid (CSF), where they form Reissner's fibre (RF) and also secretes a CSF-soluble material different from RF-material. Pax6 is a transcription factor important for the regulation of cell proliferation, migration and differentiation in the developing brain. In the present work, we studied wild-type, heterozygous and homozygous Sey mice to compare the expression of RF-antibody and Pax6 in the SCO and adjacent structures. In wild-type mice between E15 to E18, we observed Pax6 expression in cells surrounding the secretory cells of the SCO, and RF-immunoreactive material only in the SCO ependymal cell layer and its basal process. In the heterozygous mice, the neuroanatomical structure of the SCO was present, but RF-antibody staining and Pax6 expression was scarce or almost undetectable; in the homozygous mice neither SCO nor other epithalamic structures were found. We suggest that Pax6 expression at the periphery of the SCO is essential for the development and activity of the organ (AU)


No disponible


Subject(s)
Animals , Rats , Immunohistochemistry/methods , Subcommissural Organ/embryology , Paired Box Transcription Factors , Rats/embryology , Fetal Development , Glycoproteins , Brain/embryology , Cerebral Ventricles/embryology , Thalamus/embryology
SELECTION OF CITATIONS
SEARCH DETAIL