Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 67(1): 99-111, 2022 07.
Article in English | MEDLINE | ID: mdl-35471184

ABSTRACT

A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/pharmacology , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Molecular Dynamics Simulation , Mutation , Organoids/metabolism
2.
Semin Cell Dev Biol ; 22(1): 82-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21145982

ABSTRACT

The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.


Subject(s)
Actins/metabolism , Cell Movement , Dictyostelium/cytology , Dictyostelium/metabolism , Animals , Humans , Models, Biological
3.
iScience ; 25(1): 103710, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35072004

ABSTRACT

Characterization of I37R, a mutation located in the lasso motif of the CFTR chloride channel, was conducted by theratyping several CFTR modulators from both potentiator and corrector classes. Intestinal current measurements in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids, and short circuit current measurements in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype demonstrated that the I37R-CFTR results in a residual function defect amenable to treatment with potentiators and type III, but not type I, correctors. Molecular dynamics of I37R using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavorable strengthening of the interactions between the lasso motif, the regulatory (R) domain, and the transmembrane domain 2 (TMD2). Structural and functional characterization of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to expand drug access to CF patients with ultra-rare genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL