Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 91: 1-32, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35320683

ABSTRACT

Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Cryoelectron Microscopy/methods , Humans , SARS-CoV-2 , Single Molecule Imaging
2.
Cell ; 167(6): 1610-1622.e15, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912064

ABSTRACT

The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Cryoelectron Microscopy , Mass Spectrometry , Models, Molecular , Protein Multimerization , RNA, Bacterial/metabolism , RNA, Ribosomal/metabolism
3.
Mol Cell ; 82(2): 285-303, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35063097

ABSTRACT

Combining diverse experimental structural and interactomic methods allows for the construction of comprehensible molecular encyclopedias of biological systems. Typically, this involves merging several independent approaches that provide complementary structural and functional information from multiple perspectives and at different resolution ranges. A particularly potent combination lies in coupling structural information from cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with interactomic and structural information from mass spectrometry (MS)-based structural proteomics. Cryo-EM/ET allows for sub-nanometer visualization of biological specimens in purified and near-native states, while MS provides bioanalytical information for proteins and protein complexes without introducing additional labels. Here we highlight recent achievements in protein structure and interactome determination using cryo-EM/ET that benefit from additional MS analysis. We also give our perspective on how combining cryo-EM/ET and MS will continue bridging gaps between molecular and cellular studies by capturing and describing 3D snapshots of proteomes and interactomes.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Mass Spectrometry , Proteome , Proteomics , Animals , Humans , Models, Molecular , Protein Interaction Maps , Signal Transduction
4.
Mol Cell ; 80(6): 938-939, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33338409

ABSTRACT

The goal of structural biology is to understand biological macromolecules in as much detail as possible. Depending on the resolution of the structure obtained, insights will range from understanding interactions at the level of proteins, domains, or atoms. The three mainstay structural biology techniques are X-ray crystallography, nuclear magnetic resonance (NMR) imaging, and cryogenic electron microscopy (cryo-EM). Cryo-EM has rapidly gained popularity in recent years due to a combination of hardware and software advances, leading to the so-called Resolution Revolution (Kühlbrandt, 2014).


Subject(s)
Cryoelectron Microscopy , Molecular Biology/methods , Proteins/ultrastructure , Crystallography, X-Ray , Imaging, Three-Dimensional , Software
5.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32386575

ABSTRACT

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy/methods , Glycosyltransferases/metabolism , Mycobacterium smegmatis/enzymology , Acyl Carrier Protein/genetics , Bacterial Proteins/genetics , Catalytic Domain , Cell Wall/metabolism , Galactans/metabolism , Glycosyltransferases/genetics , Lipopolysaccharides/metabolism , Mutation , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Phylogeny , Protein Conformation , Substrate Specificity
6.
Trends Biochem Sci ; 47(2): 106-116, 2022 02.
Article in English | MEDLINE | ID: mdl-34823974

ABSTRACT

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate. National and regional centers have emerged to support this growth by increasing the accessibility of cryoEM throughout the biomedical research community. Through cooperation and synergy, these centers form a network of resources that accelerate the adoption of best practices for access and training and establish sustainable workflows to build future research capacity.


Subject(s)
Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Molecular Structure
7.
Nature ; 577(7790): 426-431, 2020 01.
Article in English | MEDLINE | ID: mdl-31775157

ABSTRACT

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as 'facilitates chromatin transcription' (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , Histones/chemistry , Histones/metabolism , Humans , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
8.
Nature ; 569(7755): 280-283, 2019 05.
Article in English | MEDLINE | ID: mdl-30971825

ABSTRACT

Neurite self-recognition and avoidance are fundamental properties of all nervous systems1. These processes facilitate dendritic arborization2,3, prevent formation of autapses4 and allow free interaction among non-self neurons1,2,4,5. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, ß- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities1,2,4-13. Avoidance is observed between neurons that express identical protocadherin repertoires2,5, and single-isoform differences are sufficient to prevent self-recognition10. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers10,14-20. Although these interactions have previously been characterized in isolation15,17-20, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains11.


Subject(s)
Cadherins/metabolism , Cadherins/ultrastructure , Cryoelectron Microscopy , Neurons/chemistry , Neurons/metabolism , Animals , Cadherins/chemistry , Cadherins/genetics , Crystallography, X-Ray , Liposomes/chemistry , Liposomes/metabolism , Mice , Models, Molecular , Neurons/ultrastructure , Protein Domains , Protein Multimerization , Protocadherins
9.
Nature ; 576(7786): 315-320, 2019 12.
Article in English | MEDLINE | ID: mdl-31776516

ABSTRACT

The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment of malaria has relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide1. Clinical resistance to the chemically related current first-line combination drug piperaquine (PPQ) has now emerged regionally, reducing its efficacy2. Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum CQ-resistance transporter PfCRT, a 49-kDa member of the drug/metabolite transporter superfamily that traverses the membrane of the acidic digestive vacuole of the parasite3-9. Here we present the structure, at 3.2 Å resolution, of the PfCRT isoform of CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy and antigen-binding fragment technology. Mutations that contribute to CQ and PPQ resistance localize primarily to moderately conserved sites on distinct helices that line a central negatively charged cavity, indicating that this cavity is the principal site of interaction with the positively charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, and that these drugs are mutually competitive. The 7G8 isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism that drives CQ resistance5, but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America, respectively6,9, reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest that distinct mechanistic features mediate the resistance to CQ and PPQ in PfCRT variants. These data provide atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures.


Subject(s)
Cryoelectron Microscopy , Drug Resistance/drug effects , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/ultrastructure , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/ultrastructure , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Resistance/genetics , Hydrogen-Ion Concentration , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/ultrastructure , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quinolines/metabolism , Quinolines/pharmacology
10.
Nature ; 556(7699): 122-125, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29512653

ABSTRACT

The insulin receptor is a dimeric protein that has a crucial role in controlling glucose homeostasis, regulating lipid, protein and carbohydrate metabolism, and modulating brain neurotransmitter levels. Insulin receptor dysfunction has been associated with many diseases, including diabetes, cancer and Alzheimer's disease. The primary sequence of the receptor has been known since the 1980s, and is composed of an extracellular portion (the ectodomain, ECD), a single transmembrane helix and an intracellular tyrosine kinase domain. Binding of insulin to the dimeric ECD triggers auto-phosphorylation of the tyrosine kinase domain and subsequent activation of downstream signalling molecules. Biochemical and mutagenesis data have identified two putative insulin-binding sites, S1 and S2. The structures of insulin bound to an ECD fragment containing S1 and of the apo ectodomain have previously been reported, but details of insulin binding to the full receptor and the signal propagation mechanism are still not understood. Here we report single-particle cryo-electron microscopy reconstructions of the 1:2 (4.3 Å) and 1:1 (7.4 Å) complexes of the insulin receptor ECD dimer with insulin. The symmetrical 4.3 Å structure shows two insulin molecules per dimer, each bound between the leucine-rich subdomain L1 of one monomer and the first fibronectin-like domain (FnIII-1) of the other monomer, and making extensive interactions with the α-subunit C-terminal helix (α-CT helix). The 7.4 Å structure has only one similarly bound insulin per receptor dimer. The structures confirm the binding interactions at S1 and define the full S2 binding site. These insulin receptor states suggest that recruitment of the α-CT helix upon binding of the first insulin changes the relative subdomain orientations and triggers downstream signal propagation.


Subject(s)
Cryoelectron Microscopy , Insulin/chemistry , Insulin/metabolism , Protein Multimerization , Receptor, Insulin/chemistry , Receptor, Insulin/ultrastructure , Apoproteins/chemistry , Apoproteins/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Receptor, Insulin/metabolism , Signal Transduction , Single Molecule Imaging
11.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34916296

ABSTRACT

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Subject(s)
Calcium/metabolism , Gene Expression Regulation/physiology , Homeostasis/physiology , Receptors, Calcium-Sensing/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Protein Conformation , Protein Domains , Receptors, Calcium-Sensing/genetics , Signal Transduction
12.
Nat Methods ; 17(9): 897-900, 2020 09.
Article in English | MEDLINE | ID: mdl-32778833

ABSTRACT

We present an approach for preparing cryo-electron microscopy (cryo-EM) grids to study short-lived molecular states. Using piezoelectric dispensing, two independent streams of ~50-pl droplets of sample are deposited within 10 ms of each other onto the surface of a nanowire EM grid, and the mixing reaction stops when the grid is vitrified in liquid ethane ~100 ms later. We demonstrate this approach for four biological systems where short-lived states are of high interest.


Subject(s)
Cryoelectron Microscopy/methods , Nanowires , Robotics , Specimen Handling/methods , Time Factors
13.
Biotechnol Bioeng ; 120(9): 2658-2671, 2023 09.
Article in English | MEDLINE | ID: mdl-37058415

ABSTRACT

Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.


Subject(s)
Dengue Virus , Dengue , Vaccines , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/prevention & control , Dengue Virus/chemistry , Dengue/prevention & control , Antibodies, Viral , Viral Envelope Proteins/chemistry , Antibodies, Neutralizing , Epitopes , Cross Reactions
14.
Cell ; 134(3): 474-84, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18692470

ABSTRACT

Using cryo-electron microscopy, we have solved the structure of an icosidodecahedral COPII coat involved in cargo export from the endoplasmic reticulum (ER) coassembled from purified cargo adaptor Sec23-24 and Sec13-31 lattice-forming complexes. The coat structure shows a tetrameric assembly of the Sec23-24 adaptor layer that is well positioned beneath the vertices and edges of the Sec13-31 lattice. Fitting the known crystal structures of the COPII proteins into the density map reveals a flexible hinge region stemming from interactions between WD40 beta-propeller domains present in Sec13 and Sec31 at the vertices. The structure shows that the hinge region can direct geometric cage expansion to accommodate a wide range of bulky cargo, including procollagen and chylomicrons, that is sensitive to adaptor function in inherited disease. The COPII coat structure leads us to propose a mechanism by which cargo drives cage assembly and membrane curvature for budding from the ER.


Subject(s)
Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Transport
15.
J Struct Biol ; 214(4): 107913, 2022 12.
Article in English | MEDLINE | ID: mdl-36341954

ABSTRACT

This report provides an overview of the discussions, presentations, and consensus thinking from the Workshop on Smart Data Collection for CryoEM held at the New York Structural Biology Center on April 6-7, 2022. The goal of the workshop was to address next generation data collection strategies that integrate machine learning and real-time processing into the workflow to reduce or eliminate the need for operator intervention.


Subject(s)
Data Collection
16.
Nat Methods ; 15(10): 793-795, 2018 10.
Article in English | MEDLINE | ID: mdl-30250056

ABSTRACT

Most protein particles prepared in vitreous ice for single-particle cryo-electron microscopy (cryo-EM) are adsorbed to air-water or substrate-water interfaces, which can cause the particles to adopt preferred orientations. By using a rapid plunge-freezing robot and nanowire grids, we were able to reduce some of the deleterious effects of the air-water interface by decreasing the dwell time of particles in thin liquid films. We demonstrated this by using single-particle cryo-EM and cryo-electron tomography (cryo-ET) to examine hemagglutinin, insulin receptor complex, and apoferritin.


Subject(s)
Air , Apoferritins/ultrastructure , Cryoelectron Microscopy/methods , Hemagglutinins/ultrastructure , Receptor, Insulin/ultrastructure , Water/chemistry , Humans
17.
Proc Natl Acad Sci U S A ; 115(48): 12265-12270, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30420505

ABSTRACT

Parainfluenza virus types 1-4 (PIV1-4) are highly infectious human pathogens, of which PIV3 is most commonly responsible for severe respiratory illness in newborns, elderly, and immunocompromised individuals. To obtain a vaccine effective against all four PIV types, we engineered mutations in each of the four PIV fusion (F) glycoproteins to stabilize their metastable prefusion states, as such stabilization had previously enabled the elicitation of high-titer neutralizing antibodies against the related respiratory syncytial virus. A cryoelectron microscopy structure of an engineered PIV3 F prefusion-stabilized trimer, bound to the prefusion-specific antibody PIA174, revealed atomic-level details for how introduced mutations improved stability as well as how a single PIA174 antibody recognized the trimeric apex of prefusion PIV3 F. Nine combinations of six newly identified disulfides and two cavity-filling mutations stabilized the prefusion PIV3 F immunogens and induced 200- to 500-fold higher neutralizing titers in mice than were elicited by PIV3 F in the postfusion conformation. For PIV1, PIV2, and PIV4, we also obtained stabilized prefusion Fs, for which prefusion versus postfusion titers were 2- to 20-fold higher. Elicited murine responses were PIV type-specific, with little cross-neutralization of other PIVs. In nonhuman primates (NHPs), quadrivalent immunization with prefusion-stabilized Fs from PIV1-4 consistently induced potent neutralizing responses against all four PIVs. For PIV3, the average elicited NHP titer from the quadrivalent immunization was more than fivefold higher than any titer observed in a cohort of over 100 human adults, highlighting the ability of a prefusion-stabilized immunogen to elicit especially potent neutralization.


Subject(s)
Parainfluenza Virus 1, Human/immunology , Parainfluenza Virus 2, Human/immunology , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 4, Human/immunology , Respirovirus Infections/immunology , Viral Fusion Proteins/chemistry , Viral Vaccines/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cryoelectron Microscopy , Female , Humans , Macaca mulatta , Male , Mice , Parainfluenza Virus 1, Human/chemistry , Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 2, Human/chemistry , Parainfluenza Virus 2, Human/genetics , Parainfluenza Virus 3, Human/chemistry , Parainfluenza Virus 3, Human/genetics , Parainfluenza Virus 4, Human/chemistry , Parainfluenza Virus 4, Human/genetics , Respiratory Syncytial Virus Infections , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology
18.
Nat Methods ; 14(8): 793-796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671674

ABSTRACT

We present a strategy for tackling preferred specimen orientation in single-particle cryogenic electron microscopy by employing tilts during data collection. We also describe a tool to quantify the resulting directional resolution using 3D Fourier shell correlation volumes. We applied these methods to determine the structures at near-atomic resolution of the influenza hemagglutinin trimer, which adopts a highly preferred specimen orientation, and of ribosomal biogenesis intermediates, which adopt moderately preferred orientations.


Subject(s)
Cryoelectron Microscopy/methods , Hemagglutinin Glycoproteins, Influenza Virus/ultrastructure , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Molecular Imaging/methods , Specimen Handling/methods , Algorithms , Reproducibility of Results , Sensitivity and Specificity
19.
PLoS Pathog ; 14(7): e1007159, 2018 07.
Article in English | MEDLINE | ID: mdl-29975771

ABSTRACT

Eliciting broadly neutralizing antibodies (bnAbs) targeting envelope (Env) is a major goal of HIV vaccine development, but cross-clade breadth from immunization has only sporadically been observed. Recently, Xu et al (2018) elicited cross-reactive neutralizing antibody responses in a variety of animal models using immunogens based on the epitope of bnAb VRC34.01. The VRC34.01 antibody, which was elicited by natural human infection, targets the N terminus of the Env fusion peptide, a critical component of the virus entry machinery. Here we precisely characterize the functional epitopes of VRC34.01 and two vaccine-elicited murine antibodies by mapping all single amino-acid mutations to the BG505 Env that affect viral neutralization. While escape from VRC34.01 occurred via mutations in both fusion peptide and distal interacting sites of the Env trimer, escape from the vaccine-elicited antibodies was mediated predominantly by mutations in the fusion peptide. Cryo-electron microscopy of four vaccine-elicited antibodies in complex with Env trimer revealed focused recognition of the fusion peptide and provided a structural basis for development of neutralization breadth. Together, these functional and structural data suggest that the breadth of vaccine-elicited antibodies targeting the fusion peptide can be enhanced by specific interactions with additional portions of Env. Thus, our complete maps of viral escape both delineate pathways of resistance to these fusion peptide-directed antibodies and provide a strategy to improve the breadth or potency of future vaccine-induced antibodies against Env's fusion peptide.


Subject(s)
AIDS Vaccines/immunology , Epitope Mapping/methods , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Humans , Mice
20.
J Struct Biol ; 207(1): 49-55, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31121317

ABSTRACT

Recent advances in instrumentation and software for cryoEM have increased the applicability and utility of this method. High levels of automation and faster data acquisition rates require hard decisions to be made regarding data retention. Here we investigate the efficacy of data compression applied to aligned summed movie files. Surprisingly, these images can be compressed using a standard lossy method that reduces file storage by 90-95% and yet can still be processed to provide sub-2 Šreconstructed maps. We do not advocate this as an archival method, but it may provide a useful means for retaining images as an historical record, especially at large facilities.


Subject(s)
Cryoelectron Microscopy/methods , Data Compression/methods , Information Storage and Retrieval , Automation , Image Processing, Computer-Assisted/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL