Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Semin Cancer Biol ; 96: 64-81, 2023 11.
Article in English | MEDLINE | ID: mdl-37820858

ABSTRACT

Ovarian Cancer (OC) is the most common gynecological malignancy and the eighth most diagnosed cancer in females worldwide. Presently, it ranks as the fifth leading cause of cancer-related mortality among patients globally. Major factors contributing to the lethality of OC worldwide include delayed diagnosis, chemotherapy resistance, high metastatic rates, and the heterogeneity of subtypes. Despite continuous efforts to develop novel targeted therapies and chemotherapeutic agents, challenges persist in the form of OC resistance and recurrence. In the last decade, CRISPR-Cas-based genome editing has emerged as a powerful tool for modifying genetic and epigenetic mechanisms, holding potential for treating numerous diseases. However, a significant challenge for therapeutic applications of CRISPR-Cas technology is the absence of an optimal vehicle for delivering CRISPR molecular machinery into targeted cells or tissues. Recently, extracellular vesicles (EVs) have gained traction as potential delivery vehicles for various therapeutic agents. These heterogeneous, membrane-derived vesicles are released by nearly all cells into extracellular spaces. They carry a molecular cargo of proteins and nucleic acids within their intraluminal space, encased by a cholesterol-rich phospholipid bilayer membrane. EVs actively engage in cell-to-cell communication by delivering cargo to both neighboring and distant cells. Their inherent ability to shield molecular cargo from degradation and cross biological barriers positions them ideally for delivering CRISPR-Cas ribonucleoproteins (RNP) to target cells. Furthermore, they exhibit higher biocompatibility, lower immunogenicity, and reduced toxicity compared to classical delivery platforms such as adeno-associated virus, lentiviruses, and synthetic nanoparticles. This review explores the potential of employing different CRISPR-Cas systems to target specific genes in OC, while also discussing various methods for engineering EVs to load CRISPR components and enhance their targeting capabilities.


Subject(s)
Extracellular Vesicles , Ovarian Neoplasms , Humans , Female , CRISPR-Cas Systems/genetics , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/therapy , Carcinoma, Ovarian Epithelial/metabolism , Gene Editing , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Ovarian Neoplasms/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
2.
J Transl Med ; 21(1): 709, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37817137

ABSTRACT

COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , Genomics , Cell Communication
3.
Clin Sci (Lond) ; 137(16): 1311-1332, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37650554

ABSTRACT

Extracellular vesicles (EVs) are critical mediators of cell communication, playing important roles in regulating molecular cross-talk between different metabolic tissues and influencing insulin sensitivity in both healthy and gestational diabetes mellitus (GDM) pregnancies. The ability of EVs to transfer molecular cargo between cells imbues them with potential as therapeutic agents. During pregnancy, the placenta assumes a vital role in metabolic regulation, with multiple mechanisms of placenta-mediated EV cross-talk serving as central components in GDM pathophysiology. This review focuses on the role of the placenta in the pathophysiology of GDM and explores the possibilities and prospects of targeting the placenta to address insulin resistance and placental dysfunction in GDM. Additionally, we propose the use of EVs as a novel method for targeted therapeutics in treating the dysfunctional placenta. The primary aim of this review is to comprehend the current status of EV targeting approaches and assess the potential application of these strategies in placental therapeutics, thereby delivering molecular cargo and improving maternal and fetal outcomes in GDM. We propose that EVs have the potential to revolutionize GDM management, offering hope for enhanced maternal-fetal health outcomes and more effective treatments.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , Insulin Resistance , Pregnancy , Female , Humans , Diabetes, Gestational/drug therapy , Placenta , Biological Transport , Cell Communication
4.
Cardiovasc Diabetol ; 21(1): 174, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057662

ABSTRACT

Extracellular vesicles are critical mediators of cell communication. They encapsulate a variety of molecular cargo such as proteins, lipids, and nucleic acids including miRNAs, lncRNAs, circular RNAs, and mRNAs, and through transfer of these molecular signals can alter the metabolic phenotype in recipient cells. Emerging studies show the important role of extracellular vesicle signaling in the development and progression of cardiovascular diseases and associated risk factors such as type 2 diabetes and obesity. Gestational diabetes mellitus (GDM) is hyperglycemia that develops during pregnancy and increases the future risk of developing obesity, impaired glucose metabolism, and cardiovascular disease in both the mother and infant. Available evidence shows that changes in maternal metabolism and exposure to the hyperglycemic intrauterine environment can reprogram the fetal genome, leaving metabolic imprints that define life-long health and disease susceptibility. Understanding the factors that contribute to the increased susceptibility to metabolic disorders of children born to GDM mothers is critical for implementation of preventive strategies in GDM. In this review, we discuss the current literature on the fetal programming of cardiovascular diseases in GDM and the impact of extracellular vesicle (EV) signaling in epigenetic programming in cardiovascular disease, to determine the potential link between EV signaling in GDM and the development of cardiovascular disease in infants.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetes, Gestational , Extracellular Vesicles , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/complications , Diabetes, Gestational/diagnosis , Diabetes, Gestational/epidemiology , Diabetes, Gestational/genetics , Female , Humans , Obesity/complications , Pregnancy
5.
Clin Sci (Lond) ; 136(21): 1535-1549, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36239315

ABSTRACT

Small extracellular vesicles (sEVs) play a central role in cell-to-cell communication in normal physiology and in disease, including gestational diabetes mellitus (GDM). The goal of the present study was to test the hypothesis that chronic administration of sEVs isolated from GDM causes glucose intolerance in healthy pregnant mice. Small EVs were isolated from plasma between 24 and 28 weeks gestation from healthy pregnant women (controls) and GDM, and infused intravenously for 4 days in late pregnant mice using a mini-osmotic pump. Subsequently in vivo glucose tolerance was assessed, and muscle and adipose tissue insulin sensitivity and islet glucose stimulated insulin secretion (GSIS) were determined in vitro. Mice infused with sEVs from GDM developed glucose intolerance. Administration of sEVs from controls, but not sEVs from GDM women, stimulated islet GSIS and increased fasting insulin levels in pregnant mice. Neither infusion of sEVs from controls nor from GDM women affected muscle insulin sensitivity, placental insulin or mTOR signaling, placental and fetal weight. Moreover, these results were not associated with immunomodulatory effects as human sEVs did not activate mouse T cells in vitro. We suggest that circulating sEVs regulate maternal glucose homeostasis in pregnancy and may contribute to the attenuated islet insulin secretion and more pronounced glucose intolerance in GDM as compared with healthy pregnancy.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , Glucose Intolerance , Insulin Resistance , Female , Pregnancy , Humans , Mice , Animals , Insulin Resistance/physiology , Glucose Tolerance Test , Placenta , Insulin , Glucose , Blood Glucose
6.
Am J Physiol Cell Physiol ; 317(1): C31-C38, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31067085

ABSTRACT

We previously described the protective role of the nuclear factor of activated T cells 5 (NFAT5) during hypoxia. Alternatively, inducible nitric oxide synthase (iNOS) is also induced by hypoxia. Some evidence indicates that NFAT5 is essential for the expression of iNOS in Toll-like receptor-stimulated macrophages and that iNOS inhibition increases NFAT5 expression in renal ischemia-reperfusion. Here we studied potential NFAT5 target genes stimulated by hypoxia in mouse embryonic fibroblast (MEF) cells. We used three types of MEF cells associated with NFAT5 gene: NFAT5 wild type (MEF-NFAT5+/+), NFAT5 knockout (MEF-NFAT5-/-), and NFAT5 dominant-negative (MEF-NFAT5Δ/Δ) cells. MEF cells were exposed to 21% or 1% O2 in a time course curve of 48 h. We found that, in MEF-NFAT5+/+ cells exposed to 1% O2, NFAT5 was upregulated and translocated into the nuclei, and its transactivation domain activity was induced, concomitant with iNOS, aquaporin 1 (AQP-1), and urea transporter 1 (UTA-1) upregulation. Interestingly, in MEF-NFAT5-/- or MEF-NFAT5Δ/Δ cells, the basal levels of iNOS and AQP-1 expression were strongly downregulated, but not for UTA-1. The upregulation of AQP-1, UTA-1, and iNOS by hypoxia was blocked in both NFAT5-mutated cells. The iNOS induction by hypoxia was recovered in MEF-NFAT5-/- MEF cells, when recombinant NFAT5 protein expression was reconstituted, but not in MEF-NFAT5Δ/Δ cells, confirming the dominant-negative effect of MEF-NFAT5Δ/Δ cells. We did not see the rescue effect on AQP-1 expression. This work provides novel and relevant information about the signaling pathway of NFAT5 during responses to oxygen depletion in mammalian cells and suggests that the expression of iNOS induced by hypoxia is dependent on NFAT5.


Subject(s)
Fibroblasts/enzymology , Nitric Oxide Synthase Type II/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Cell Hypoxia , Cells, Cultured , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Signal Transduction , Transcription Factors/genetics , Urea Transporters
7.
Biol Res ; 52(1): 55, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601259

ABSTRACT

BACKGROUND: Epanorin (EP) is a secondary metabolite of the Acarospora lichenic species. EP has been found in lichenic extracts with antimicrobial activity, and UV-absorption properties have been described for closely related molecules; however, its antiproliferative activity in cancer cells has not yet been explored. It has been hypothesized that EP inhibits cancer cell growth. MCF-7 breast cancer cells, normal fibroblasts, and the non-transformed HEK-293 cell line were exposed to increasing concentrations of EP, and proliferation was assessed by the sulforhodamine-B assay. RESULTS: MCF-7 cells exposed to EP were examined for cell cycle progression using flow cytometry, and DNA fragmentation was examined using the TUNEL assay. In addition, EP's mutagenic activity was assessed using the Salmonella typhimurium reverse mutation assay. The data showed that EP inhibits proliferation of MCF-7 cells, and it induces cell cycle arrest in G0/G1 through a DNA fragmentation-independent mechanism. Furthermore, EP's lack of overt cytotoxicity in the normal cell line HEK-293 and human fibroblasts in cell culture is supported by the absence of mutagenic activity of EP. CONCLUSION: EP emerges as a suitable molecule for further studies as a potential antineoplastic agent.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Lichens/chemistry , Antineoplastic Agents/isolation & purification , DNA Fragmentation , Female , Flow Cytometry , Humans , MCF-7 Cells
8.
Cytotherapy ; 18(5): 630-41, 2016 May.
Article in English | MEDLINE | ID: mdl-27059200

ABSTRACT

BACKGROUND AIMS: Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. METHODS: C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. RESULTS: poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. CONCLUSIONS: These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Colitis/therapy , Mesenchymal Stem Cell Transplantation , Poly I-C/pharmacology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cells, Cultured , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Female , Humans , Lipopolysaccharides , Lymphocyte Culture Test, Mixed , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Umbilical Cord/cytology
9.
Periodontol 2000 ; 67(1): 251-67, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25494604

ABSTRACT

Periodontal disease is one of the most common conditions affecting humans, and current treatment strategies, which focus on the removal and long-term control of dental plaque, are generally successful in eliminating active disease and promoting tissue repair. However, regeneration of the supporting structures of the tooth remains an elusive goal and a challenge. The formation of new bone and cementum with supportive periodontal ligament is the ultimate objective, but current regeneration therapies are incapable of achieving this in a predictable way. The regeneration of periodontal tissue requires a combination of fundamental events, such as appropriate level and sequencing of regulatory signals, the presence of progenitor cells, an extracellular matrix or carrier and an adequate blood supply. Based on tissue-engineering concepts, the regeneration process may be modulated by manipulating the signaling pathways of regulatory molecules, the extracellular matrix or scaffold, or the cellular components. The identification of mesenchymal stem cells from bone marrow started a new era in regenerative medicine. Tissue engineering using mesenchymal stem cells became a therapeutic option with several advantages, including high-quality regeneration of damaged tissues without the formation of fibrous tissue, minimal donor-site morbidity compared with autografts and a low risk of autoimmune rejection and disease transmission. The aim of this review was to describe the main sources of mesenchymal stem cells from tissues in the oral cavity and the potential of these cells in regenerative therapy. Special attention is paid to gingival tissue-derived mesenchymal stem cells because they represent the most accessible source of stem cells in the human mouth.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mouth/cytology , Tissue Engineering/methods , Animals , Guided Tissue Regeneration, Periodontal , Humans , Periodontal Diseases/therapy , Regeneration/physiology , Stem Cells/cytology , Stem Cells/pathology , Stem Cells/physiology
10.
Rev Med Chil ; 143(4): 415-23, 2015 Apr.
Article in Spanish | MEDLINE | ID: mdl-26204531

ABSTRACT

BACKGROUND: Intracoronary delivery of autologous bone marrow mononuclear cells is an interesting therapeutic promise for patients with heart failure of different etiologies. AIM: To evaluate the long-term safety and efficacy of this therapy in patients with dilated cardiomyopathy of different etiologies under optimal medical treatment. PATIENTS AND METHODS: Prospective, open-label, controlled clinical trial. Of 23 consecutive patients, 12 were assigned to autologous bone marrow mononuclear cell intracoronary transplantation, receiving a mean dose of 8.19 ± 4.43 x 10(6) CD34+ cells. Mortality, cardiovascular readmissions and cancer incidence rate, changes in functional capacity, quality of life questionnaires and echocardiographic measures from baseline, were assessed at long-term follow-up (37.7 ± 9.7 months) in patients receiving or not the cells. RESULTS: No significant differences were observed in mortality, cardiovascular readmissions or cancer incidence rate amongst groups. An improvement in functional class and quality of life questionnaires in the transplanted group was observed (p < 0.01). The treated group showed a non-significant increase in left ventricular ejection fraction at long-term follow-up (from 26.75 ± 4.85% to 34.90 ± 8.57%, p = 0.059 compared to baseline). There were no changes in left ventricular volumes. We observed no improvement of these variables in the control group. CONCLUSIONS: Intracoronary transplantation of autologous bone marrow mononuclear cells is feasible and safe in patients with dilated cardiomyopathy of diverse etiologies. This therapy was associated to persistent improvements in functional class and quality of life. There was also a non-significant long-term improvement of left ventricular function.


Subject(s)
Bone Marrow Transplantation/methods , Cardiomyopathy, Dilated/surgery , Bone Marrow Transplantation/mortality , Cardiac Volume/physiology , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/mortality , Female , Follow-Up Studies , Humans , Male , Middle Aged , Patient Readmission/statistics & numerical data , Prospective Studies , Quality of Life , Stroke Volume/physiology , Surveys and Questionnaires , Time Factors , Transplantation, Autologous , Treatment Outcome , Ultrasonography , Ventricular Function/physiology
11.
Rev Med Chil ; 142(8): 1034-46, 2014 Aug.
Article in Spanish | MEDLINE | ID: mdl-25424676

ABSTRACT

Available medical therapy is unable to completely prevent or revert the pathological cardiac remodeling secondary to ischemia or other injuries, which is responsible for the development of heart failure. Regenerative medicine through stem cells had an explosive development in the cardiovascular area during the past decade. Stem cells possess the capacity to regenerate, repair or substitute damaged tissue, allowing the reestablishment of its function. Stem cells can also modulate apoptosis, angiogenesis, fibrosis and inflammation, favoring the endogenous regenerative process initiated by the damaged tissue. These capacities have been corroborated in several animal models of cardiovascular diseases with positive results. In humans, therapies with bone marrow mononuclear stem cells, mesenchymal stem cells and cardiac stem cells are safe. Most randomized clinical trials in patients with myocardial infarction or cardiomyopathies of different etiologies have reported benefits on ventricular function, quality of life and even over mortality of treated patients. This article reviews the state of art of stem cell therapy in cardiovascular diseases, focusing on the most common cellular types used in patients with acute myocardial infarction and chronic cardiomyopathies of different etiologies.


Subject(s)
Cardiovascular Diseases/surgery , Stem Cell Transplantation/methods , Cell Transdifferentiation , Chronic Disease , Heart Diseases/surgery , Humans , Multipotent Stem Cells/physiology , Multipotent Stem Cells/transplantation , Myocardial Infarction/surgery
12.
Cytokine Growth Factor Rev ; 76: 86-98, 2024 04.
Article in English | MEDLINE | ID: mdl-38233286

ABSTRACT

Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.


Subject(s)
Extracellular Vesicles , Pre-Eclampsia , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Premature Birth/metabolism , Premature Birth/pathology , Extracellular Vesicles/physiology , Cell Communication
13.
J Extracell Biol ; 3(1): e135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938672

ABSTRACT

Placental extracellular vesicles (EVs) can be found in the maternal circulation throughout gestation, and their concentration, content and bioactivity are associated with pregnancy outcomes, including gestational diabetes mellitus (GDM). However, the effect of changes in the maternal microenvironment on the mechanisms associated with the secretion of EVs from placental cells remains to be fully established. Here, we evaluated the effect of high glucose on proteins associated with the trafficking and release of different populations of EVs from placental cells. BeWo and HTR8/SVneo cells were used as placental models and cultured under 5-mM D-glucose (i.e. control) or 25-mM D-glucose (high glucose). Cell-conditioned media (CCM) and cell lysate were collected after 48 h. Different populations of EVs were isolated from CCM by ultracentrifugation (i.e. pellet 2K-g, pellet 10K-g, and pellet 100K-g) and characterised by Nanoparticle Tracking Analysis. Quantitative proteomic analysis (IDA/SWATH) and multiple reaction monitoring protocols at high resolution (MRMHR) were developed to quantify 37 proteins related to biogenesis, trafficking/release and recognition/uptake of EVs. High glucose increased the secretion of total EVs across the pellets from BeWo cells, an effect driven mainly by changes in the small EVs concentration in the CCM. Interestingly, no effect of high glucose on HTR8/SVneo cells EVs secretion was observed. High glucose induces changes in proteins associated with vesicle trafficking in BeWo cells, including Heat Shock Protein Family A (Hsp70) Member 9 (HSPA9) and Member 8 (HSPA8). For HTR8/SVneo, altered proteins including prostaglandin F2α receptor regulatory protein (FPRP), RAB5A, RAB35, RAB5B, and RB11B, STAM1 and TSG101. These proteins are associated with the secretion and trafficking of EVs, which could explain in part, changes in the levels of circulating EVs in diabetic pregnancies. Further, we identified that proteins RAB11B, PDCD6IP, STAM, HSPA9, HSPA8, SDCBP, RAB5B, RAB5A, RAB7A and ERAP1 regulate EV release in response to high and low glucose when overexpressed in cells. Interestingly, immunohistochemistry analysis of RAB7A revealed distinct changes in placental tissues obtained from women with normal glucose tolerance (NGT, n = 6) and those with GDM (n = 6), influenced by diet or insulin treatment. High glucose regulation of proteins involved in intercellular dynamics and the trafficking of multivesicular bodies to the plasma membrane in placental cells is relevant in the context of GDM pregnancies.

14.
Aust Orthod J ; 29(1): 3-12, 2013 May.
Article in English | MEDLINE | ID: mdl-23785932

ABSTRACT

AIM: The aim of this study was to assess and describe the morphological effects of an intra-articular iniection of Mesenchymal Stem Cells (MSCs) and/or Low Intensity Pulsed Ultrasound (LIPUS) stimulation on the mandibular condyles of growing rats, using cone beam computed tomography (CBCT) and histology. METHODS: Twenty-six young (23-day-old) rats were divided into 5 groups identified as LIPUS-stimulated (20 minutes daily using 50 mW/cm2, 1MHz, 0.2 millisecond pulses), MSCs injected (1 x 10(5) cells/kg), LIPUS + MSCs, medium inlected, and untreated controls. All treatments were performed in the left temporomandibular joint of each rat (TMJs). At day 21, CBCTs were obtained for cephalometric analysis and 3D reconstructions. After animal sacrifice, left and right TMJ sections were histologically prepared and examined. The Wilcoxon sign rank test and the Kruskal-Wallis 2 test were applied for statistical comparison. RESULTS: Imaging results showed that left condyles were wider in all LIPUS-treated groups (p < 0.05), while the LIPUS-only group had a greater left sagittal condylar length. LIPUS-treated groups displayed a lower midline shift to the right (p < 0.02). No significant differences were observed in the MSC group. Bone marrow morphology and vascularity differed between the groups as LIPUS-treated groups exhibited increased vascularity in the erosive cartilage zone. CONCLUSION: It was established that LIPUS and MSC application to the TMJ region of growing rats favoured transverse condylar growth, while LIPUS application alone may enhance sagittal condylar development.The MSC injection model had little effect on sagittal condylar growth.


Subject(s)
Mandibular Condyle/growth & development , Mesenchymal Stem Cells/physiology , Ultrasonic Therapy , Animals , Bone Marrow/blood supply , Bone Marrow/pathology , Cartilage, Articular/blood supply , Cartilage, Articular/pathology , Cephalometry/methods , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Injections, Intra-Articular , Mandibular Condyle/blood supply , Mandibular Condyle/pathology , Mesenchymal Stem Cell Transplantation/methods , Microvessels/pathology , Osteoblasts/pathology , Pilot Projects , Rats , Rats, Sprague-Dawley , Temporomandibular Joint , Time Factors
15.
Cytokine Growth Factor Rev ; 73: 52-68, 2023 10.
Article in English | MEDLINE | ID: mdl-37423866

ABSTRACT

Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.


Subject(s)
Extracellular Vesicles , Ovarian Neoplasms , Humans , Female , Extracellular Vesicles/metabolism , Cell Communication , Biomarkers/metabolism , Proteins/metabolism , Lipids
16.
Pediatr Blood Cancer ; 59(5): 895-901, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22238059

ABSTRACT

BACKGROUND: The Chilean population is ethnically diverse, and more than 50% of children referred for hematopoietic stem cell transplantation (HSCT) lack a suitable donor. PROCEDURE: To expand the donor pool, we assessed the feasibility, tolerance, and efficacy of using a haploidentical (HI) donor and a reduced-intensity conditioning regimen for high-risk pediatric leukemia. This study was facilitated by technology transfer from St. Jude Children's Research Hospital over the 2 preceding years. RESULTS: Between March 2006 and April 2009, 10 patients (median age, 9.8 years) received T cell-depleted grafts at Calvo Mackenna Hospital in Santiago. Median cell doses were CD34+: 7.45 × 10(6)/kg (range, 4.00-20.20 × 10(6)/kg); CD3+: 0.88 × 10(5)/kg (0.11-1.35 × 10(5)/kg); and CD56+: 71.30 × 10(6)/kg (31.50-131.80 × 10(6)/kg). Nine patients experienced complete engraftment; six of the nine remain alive and clinically well 13-50 months post-HSCT. Three patients died after bone marrow relapse, while only one died of transplant-related causes. Virus reactivation was the main post-transplant complication: 5/10 had positive CMV PCR but none had CMV disease. One patient developed acute GvHD > grade II and only one had chronic GvHD. CONCLUSIONS: HI-HSCT is feasible in our setting, offers a rational treatment option, and expands the donor pool significantly for children with high-risk leukemia in a developing country. This information is especially relevant to other ethnically diverse populations that are poorly represented in international donor registries.


Subject(s)
Graft Survival , Leukemia/therapy , Living Donors , Registries , Stem Cell Transplantation , Adolescent , Child , Child, Preschool , Chile , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/mortality , Cytomegalovirus Infections/therapy , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Graft vs Host Disease/therapy , Humans , Leukemia/mortality , Male , Risk Factors , Transplantation, Homologous
17.
Biol Res ; 45(3): 269-77, 2012.
Article in English | MEDLINE | ID: mdl-23283436

ABSTRACT

Mesenchymal stem cells (MSCs) are now known to display not only stem cell multipotency, but also robust antiinflammatory and regenerative properties. After widespread in-vitro and in-vivo preclinical testing, autologous and allogeneic MSCs have been applied in a range of immune mediated conditions, including graft versus host disease, Crohn's disease, multiple sclerosis, refractory systemic lupus erythematosus and systemic sclerosis. Current data suggests that MSCs may not only replace diseased tissues, but also exert several trophic, regenerative and antiinflammatory effects. While the clinical outcome in case reports and phase I-II trials seems occasionally striking, these limited results point to the need to perform controlled multicenter trials. Future advances from stem cell science can be expected to pinpoint significant MSC subpopulations and/or stem cell markers for improved regenerative or immunoregulatory properties.


Subject(s)
Autoimmune Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Clinical Trials as Topic , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology
18.
Biol Res ; 45(2): 193-200, 2012.
Article in English | MEDLINE | ID: mdl-23096364

ABSTRACT

Th17 cells, a recently described subtype of CD4+ effector lymphocytes, have been linked to cell-mediated autoimmune and inflammatory diseases as well as to cardiovascular diseases. However, the participation of IL-17A in myocardial ischemic injury has not been clearly defined. We therefore conducted the present study to evaluate IL-17A and Th17-related cytokine levels in a rat model of myocardial infarction (MI). MI was induced in male Sprague Dawley rats by coronary artery ligation. Controls were sham-operated (Sh) or non-operated (C). Blood and samples from the left ventricle (LV) were collected at weeks 1 and 4 post-MI. At week 1, MI animals exhibited increased IL-6, IL-23 and TGF-ß mRNA levels with no apparent change in IL-17 mRNA or protein levels in whole LV. Only TGF-ß mRNA remained elevated at week 4 post-MI. However, further analysis revealed that IL-17A mRNA and protein levels as well as IL-6 and IL-23 mRNA were indeed increased in the infarcted region, though not in the remote non infarcted region of the LV, except for IL-23 mRNA. The increased expression of IL-17A and Th17-related cytokines in the infarcted region of LV, suggests that this proinflammatory pathway might play a role in early stages of post MI cardiac remodelling.


Subject(s)
Heart Ventricles/metabolism , Interleukin-17/metabolism , Myocardial Infarction/metabolism , Th17 Cells/metabolism , Animals , Disease Models, Animal , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
19.
Methods Mol Biol ; 2504: 79-89, 2022.
Article in English | MEDLINE | ID: mdl-35467280

ABSTRACT

Extracellular vesicles (EVs) carry a wide range of molecules, such as proteins, RNAs, and DNA. EVs are secreted from a wide range of cells, including placental cells. Interestingly, EVs secreted from placental cells have been identified in maternal circulation as early as 6 weeks of gestation, and their concentration increases with the gestational age. While there is growing interest in elucidating the role of exosomes during normal and complicated pregnancies, progress in the field has been delayed because of the inability to quantify placental EVs from the maternal circulation. Recent reports have demonstrated the presence of placental-type alkaline phosphatase (PLAP) EVs only in the blood of pregnant women, indicating that PLAP is a marker to identify EVs secreted from the placenta. Therefore, here we describe a workflow to quantify placental EVs from maternal circulation using a targeted proteomics approach based on selecting specific peptides identified in the PLAP protein.


Subject(s)
Exosomes , Extracellular Vesicles , Exosomes/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Mass Spectrometry , Placenta/metabolism , Pregnancy , Proteins/metabolism , Proteomics
20.
Front Bioeng Biotechnol ; 10: 916229, 2022.
Article in English | MEDLINE | ID: mdl-36046670

ABSTRACT

In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.

SELECTION OF CITATIONS
SEARCH DETAIL