Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mol Cancer Ther ; 20(1): 121-131, 2021 01.
Article in English | MEDLINE | ID: mdl-33277440

ABSTRACT

TIGIT is an immune checkpoint inhibitor expressed by effector CD4+ and CD8+ T cells, NK cells, and regulatory T cells (Tregs). Inhibition of TIGIT-ligand binding using antagonistic anti-TIGIT mAbs has shown in vitro potential to restore T-cell function and therapeutic efficacy in murine tumor models when combined with an anti-PD(L)-1 antibody. In the current work, we demonstrate broader TIGIT expression than previously reported in healthy donors and patients with cancer with expression on γδ T cells, particularly in CMV-seropositive donors, and on tumor cells from hematologic malignancies. Quantification of TIGIT density revealed tumor-infiltrating Tregs as the population expressing the highest receptor density. Consequently, the therapeutic potential of anti-TIGIT mAbs might be wider than the previously described anti-PD(L)-1-like restoration of αß T-cell function. CD155 also mediated inhibition of γδ T cells, an immune population not previously described to be sensitive to TIGIT inhibition, which could be fully prevented via use of an antagonistic anti-TIGIT mAb (EOS-448). In PBMCs from patients with cancer, as well as in tumor-infiltrating lymphocytes from mice, the higher TIGIT expression in Tregs correlated with strong antibody-dependent killing and preferential depletion of this highly immunosuppressive population. Accordingly, the ADCC/ADCP-enabling format of the anti-TIGIT mAb had superior antitumor activity, which was dependent upon Fcγ receptor engagement. In addition, the anti-TIGIT mAb was able to induce direct killing of TIGIT-expressing tumor cells both in human patient material and in animal models, providing strong rationale for therapeutic intervention in hematologic malignancies. These findings reveal multiple therapeutic opportunities for anti-TIGIT mAbs in cancer therapeutics.


Subject(s)
Antibodies, Neoplasm/immunology , Antibodies, Neoplasm/pharmacology , Cytotoxicity, Immunologic , Receptors, Immunologic/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antigens, CD/metabolism , Cytotoxicity, Immunologic/drug effects , Female , Healthy Volunteers , Humans , Immunoglobulin G/metabolism , Lymphocyte Depletion , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes, Regulatory/drug effects
2.
Nat Commun ; 12(1): 5395, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34518531

ABSTRACT

Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Genomic Instability , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Chromosome Aberrations , DNA Damage , DNA Repair , Humans , Mutation , Polymorphism, Single Nucleotide , Shelterin Complex , Telomere-Binding Proteins/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL