Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 612(7941): 739-747, 2022 12.
Article in English | MEDLINE | ID: mdl-36517598

ABSTRACT

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Subject(s)
Brain-Gut Axis , Dopamine , Exercise , Gastrointestinal Microbiome , Motivation , Running , Animals , Mice , Brain/cytology , Brain/metabolism , Dopamine/metabolism , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/metabolism , Sensory Receptor Cells/metabolism , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Exercise/physiology , Exercise/psychology , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Models, Animal , Humans , Ventral Striatum/cytology , Ventral Striatum/metabolism , Running/physiology , Running/psychology , Reward , Individuality
2.
Nature ; 600(7888): 269-273, 2021 12.
Article in English | MEDLINE | ID: mdl-34789878

ABSTRACT

The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.


Subject(s)
Body Weight Maintenance/genetics , Body Weight Maintenance/physiology , Cerebellum/physiology , Food , Protein Biosynthesis , Reverse Genetics , Satiety Response/physiology , Adult , Animals , Appetite Regulation/genetics , Appetite Regulation/physiology , Cerebellar Nuclei/cytology , Cerebellar Nuclei/physiology , Cerebellum/cytology , Cues , Dopamine/metabolism , Eating/genetics , Eating/physiology , Feeding Behavior/physiology , Female , Homeostasis , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Neostriatum/metabolism , Neurons/physiology , Obesity/genetics , Philosophy , Young Adult
3.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464066

ABSTRACT

Long-term sustained pain in the absence of acute physical injury is a prominent feature of chronic pain conditions. While neurons responding to noxious stimuli have been identified, understanding the signals that persist without ongoing painful stimuli remains a challenge. Using an ethological approach based on the prioritization of adaptive survival behaviors, we determined that neuropeptide Y (NPY) signaling from multiple sources converges on parabrachial neurons expressing the NPY Y1 receptor to reduce sustained pain responses. Neural activity recordings and computational modeling demonstrate that activity in Y1R parabrachial neurons is elevated following injury, predicts functional coping behavior, and is inhibited by competing survival needs. Taken together, our findings suggest that parabrachial Y1 receptor-expressing neurons are a critical hub for endogenous analgesic pathways that suppress sustained pain states.

4.
Neuroscience ; 483: 40-51, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34923039

ABSTRACT

The mesolimbic dopamine (DA) system reinforces behaviors that are critical for survival. However, drug dependence can occur when drugs of abuse, such as nicotine, highjack this reinforcement system. Pharmacologically targeting the DA system to selectively block drug reinforcement requires a detailed understanding of the neural circuits and molecular pathways that lead to the reward-based activation of mesolimbic circuits. Varenicline is an approved smoking cessation drug that has been shown to block nicotine-evoked DA increases in the nucleus accumbens (NAc) through action on nicotinic acetylcholine receptors. Because these receptors have been implicated in the reinforcement of other addictive substances, we explored the possibility that varenicline could broadly affect reward processing. We used in vivo fiber photometry to monitor midbrain DA neuron activity and striatal DA levels following either natural or drug rewards in mice treated with varenicline. We demonstrate that varenicline pretreatment enhances the suppression of nicotine-evoked DA release by attenuating DA neuron activity in the VTA. Varenicline's ability to attenuate DA release is highly specific to nicotine, and varenicline slightly elevates DA release when co-administered with morphine or ethanol. Furthermore, varenicline has no effect on DA release in response to naturally rewarding behavior such as food intake or exercise. These results demonstrate the exquisite specificity with which varenicline blocks nicotine reward and highlight the complexity with which different rewards activate the mesolimbic DA system.


Subject(s)
Nicotinic Agonists , Pharmaceutical Preparations , Animals , Dopamine/metabolism , Mice , Nicotinic Agonists/pharmacology , Nucleus Accumbens/metabolism , Pharmaceutical Preparations/metabolism , Reward , Varenicline/metabolism , Varenicline/pharmacology , Varenicline/therapeutic use
5.
Cell Metab ; 33(3): 676-687.e5, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33450178

ABSTRACT

Food intake is tightly regulated by complex and coordinated gut-brain interactions. Nutrients rapidly modulate activity in key populations of hypothalamic neurons that regulate food intake, including hunger-sensitive agouti-related protein (AgRP)-expressing neurons. Because individual macronutrients engage specific receptors in the gut to communicate with the brain, we reasoned that macronutrients may utilize different pathways to reduce activity in AgRP neurons. Here, we revealed that AgRP neuron activity in hungry mice is inhibited by site-specific intestinal detection of different macronutrients. We showed that vagal gut-brain signaling is required for AgRP neuron inhibition by fat. In contrast, spinal gut-brain signaling relays the presence of intestinal glucose. Further, we identified glucose sensors in the intestine and hepatic portal vein that mediate glucose-dependent AgRP neuron inhibition. Therefore, distinct pathways are activated by individual macronutrients to inhibit AgRP neuron activity.


Subject(s)
Intestines/physiology , Neurons/metabolism , Nutrients/metabolism , Agouti-Related Protein/metabolism , Animals , Brain/drug effects , Brain/physiology , Dietary Fats/metabolism , Dietary Fats/pharmacology , Glucose/metabolism , Glucose/pharmacology , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Mice, Inbred C57BL , Nutrients/pharmacology , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/metabolism , Vagus Nerve/drug effects , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL