Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Genet Med ; 26(5): 101077, 2024 05.
Article in English | MEDLINE | ID: mdl-38275146

ABSTRACT

PURPOSE: Gene selection for genomic newborn screening (gNBS) underpins the validity, acceptability, and ethical application of this technology. Existing gNBS gene lists are highly variable despite being based on shared principles of gene-disease validity, treatability, and age of onset. This study aimed to curate a gNBS gene list that builds upon existing efforts and provide a core consensus list of gene-disease pairs assessed by multiple expert groups worldwide. METHODS: Our multidisciplinary expert team curated a gene list using an open platform and multiple existing curated resources. We included severe treatable disorders with age of disease onset <5 years with established gene-disease associations and reliable variant detection. We compared the final list with published lists from 5 other gNBS projects to determine consensus genes and to identify areas of discrepancy. RESULTS: We reviewed 1279 genes and 604 met our inclusion criteria. Metabolic conditions comprised the largest group (25%), followed by immunodeficiencies (21%) and endocrine disorders (15%). We identified 55 consensus genes included by all 6 gNBS research projects. Common reasons for discrepancy included variable definitions of treatability and strength of gene-disease association. CONCLUSION: We have identified a consensus gene list for gNBS that can be used as a basis for systematic harmonization efforts internationally.


Subject(s)
Genetic Testing , Genomics , Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Genetic Testing/methods , Genetic Testing/standards , Genomics/methods , Consensus
2.
BMJ Open ; 14(4): e081426, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569677

ABSTRACT

INTRODUCTION: Newborn bloodspot screening (NBS) is a highly successful public health programme that uses biochemical and other assays to screen for severe but treatable childhood-onset conditions. Introducing genomic sequencing into NBS programmes increases the range of detectable conditions but raises practical and ethical issues. Evidence from prospectively ascertained cohorts is required to guide policy and future implementation. This study aims to develop, implement and evaluate a genomic NBS (gNBS) pilot programme. METHODS AND ANALYSIS: The BabyScreen+ study will pilot gNBS in three phases. In the preimplementation phase, study materials, including education resources, decision support and data collection tools, will be designed. Focus groups and key informant interviews will also be undertaken to inform delivery of the study and future gNBS programmes. During the implementation phase, we will prospectively recruit birth parents in Victoria, Australia, to screen 1000 newborns for over 600 severe, treatable, childhood-onset conditions. Clinically accredited whole genome sequencing will be performed following standard NBS using the same sample. High chance results will be returned by genetic healthcare professionals, with follow-on genetic and other confirmatory testing and referral to specialist services as required. The postimplementation phase will evaluate the feasibility of gNBS as the primary aim, and assess ethical, implementation, psychosocial and health economic factors to inform future service delivery. ETHICS AND DISSEMINATION: This project received ethics approval from the Royal Children's Hospital Melbourne Research Ethics Committee: HREC/91500/RCHM-2023, HREC/90929/RCHM-2022 and HREC/91392/RCHM-2022. Findings will be disseminated to policy-makers, and through peer-reviewed journals and conferences.


Subject(s)
Genomics , Neonatal Screening , Child , Humans , Infant, Newborn , Pilot Projects , Prospective Studies , Victoria
3.
J Pers Med ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36579509

ABSTRACT

Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Mission­the Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.

4.
Eur J Hum Genet ; 29(1): 79-87, 2021 01.
Article in English | MEDLINE | ID: mdl-32678339

ABSTRACT

Reproductive genetic carrier screening aims to offer couples information about their chance of having children with certain autosomal recessive and X-linked genetic conditions. We developed a gene list for use in "Mackenzie's Mission", a research project in which 10,000 couples will undergo screening. Criteria for selecting genes were: the condition should be life-limiting or disabling, with childhood onset, such that couples would be likely to take steps to avoid having an affected child; and/or be one for which early diagnosis and intervention would substantially change outcome. Strong evidence for gene-phenotype relationship was required. Candidate genes were identified from OMIM and via review of 23 commercial and published gene lists. Genes were reviewed by 16 clinical geneticists using a standard operating procedure, in a process overseen by a multidisciplinary committee which included clinical geneticists, genetic counselors, an ethicist, a parent of a child with a genetic condition and scientists from diagnostic and research backgrounds. 1300 genes met criteria. Genes associated with non-syndromic deafness and non-syndromic differences of sex development were not included. Our experience has highlighted that gene selection for a carrier screening panel needs to be a dynamic process with ongoing review and refinement.


Subject(s)
Consensus Development Conferences as Topic , Genetic Carrier Screening/methods , Australia , Genetic Carrier Screening/statistics & numerical data , Genetic Predisposition to Disease , Humans , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL