ABSTRACT
BACKGROUND: Contact tracing is a vital public health tool used to prevent the spread of infectious diseases. However, traditional interview-format contact tracing (TCT) is labor-intensive and time-consuming and may be unsustainable for large-scale pandemics such as COVID-19. OBJECTIVE: In this study, we aimed to address the limitations of TCT. The Yale School of Engineering developed a Hardware-Assisted Bluetooth-based Infection Tracking (HABIT) device. Following the successful implementation of HABIT in a university setting, this study sought to evaluate the performance and implementation of HABIT in a high school setting using an embedded mixed methods design. METHODS: In this pilot implementation study, we first assessed the performance of HABIT using mock case simulations in which we compared contact tracing data collected from mock case interviews (TCT) versus Bluetooth devices (HABIT). For each method, we compared the number of close contacts identified and identification of unique contacts. We then conducted an embedded mixed methods evaluation of the implementation outcomes of HABIT devices using pre- and postimplementation quantitative surveys and qualitative focus group discussions with users and implementers according to the Reach, Effectiveness, Adoption, Implementation, and Maintenance framework. RESULTS: In total, 17 students and staff completed mock case simulations in which 161 close contact interactions were detected by interview or Bluetooth devices. We detected significant differences in the number of close contacts detected by interview versus Bluetooth devices (P<.001), with most (127/161, 78.9%) contacts being reported by interview only. However, a significant number (26/161, 16.1%; P<.001) of contacts were uniquely identified by Bluetooth devices. The interface, ease of use, coherence, and appropriateness were highly rated by both faculty and students. HABIT provided emotional security to users. However, the prototype design and technical difficulties presented barriers to the uptake and sustained use of HABIT. CONCLUSIONS: Implementation of HABIT in a high school was impeded by technical difficulties leading to decreased engagement and adherence. Nonetheless, HABIT identified a significant number of unique contacts not reported by interview, indicating that electronic technologies may augment traditional contact tracing once user preferences are accommodated and technical glitches are overcome. Participants indicated a high degree of acceptance, citing emotional reassurance and a sense of security with the device.
ABSTRACT
BACKGROUND: Many have proposed the use of Bluetooth technology to help scale up contact tracing for COVID-19. However, much remains unknown about the accuracy of this technology in real-world settings, the attitudes of potential users, and the differences between delivery formats (mobile app vs carriable or wearable devices). OBJECTIVE: We pilot tested 2 separate Bluetooth contact tracing technologies on a university campus to evaluate their sensitivity and specificity, and to learn from the experiences of the participants. METHODS: We used a convergent mixed methods study design, and participants included graduate students and researchers working on a university campus during June and July 2020. We conducted separate 2-week pilot studies for each Bluetooth technology. The first was for a mobile phone app ("app pilot"), and the second was for a small electronic "tag" ("tag pilot"). Participants validated a list of Bluetooth-identified contacts daily and reported additional close contacts not identified by Bluetooth. We used these data to estimate sensitivity and specificity. Participants completed a postparticipation survey regarding appropriateness, usability, acceptability, and adherence, and provided additional feedback via free text. We used tests of proportions to evaluate differences in survey responses between participants from each pilot, paired t tests to measure differences between compatible survey questions, and qualitative analysis to evaluate the survey's free-text responses. RESULTS: Among 25 participants in the app pilot, 53 contact interactions were identified by Bluetooth and an additional 61 by self-report. Among 17 participants in the tag pilot, 171 contact interactions were identified by Bluetooth and an additional 4 by self-report. The tag had significantly higher sensitivity compared with the app (46/49, 94% vs 35/61, 57%; P<.001), as well as higher specificity (120/126, 95% vs 123/141, 87%; P=.02). Most participants felt that Bluetooth contact tracing was appropriate on campus (26/32, 81%), while significantly fewer participants felt that using other technologies, such as GPS or Wi-Fi, was appropriate (17/31, 55%; P=.02). Most participants preferred technology developed and managed by the university rather than a third party (27/32, 84%) and preferred not to have tracing apps on their personal phones (21/32, 66%), due to "concerns with privacy." There were no significant differences in self-reported adherence rates across pilots. CONCLUSIONS: Convenient and carriable Bluetooth technology may improve tracing efficiency while alleviating privacy concerns by shifting data collection away from personal devices. With accuracy comparable to, and in this case, superior to, mobile phone apps, such approaches may be suitable for workplace or school settings with the ability to purchase and maintain physical devices.