Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Autoimmun ; 146: 103219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696927

ABSTRACT

Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.


Subject(s)
Collagen , Disease Models, Animal , Fibroblasts , Fibrosis , Mice, Knockout , Receptors, Immunologic , Scleroderma, Systemic , Animals , Humans , Scleroderma, Systemic/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Collagen/metabolism , Fibroblasts/metabolism , Bleomycin/adverse effects , Skin/pathology , Skin/metabolism , Skin/immunology , Signal Transduction , Male , Female , Cells, Cultured
2.
BMC Cardiovasc Disord ; 23(1): 89, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792985

ABSTRACT

BACKGROUND: T cells have been implicated in the development and progression of inflammatory processes in chronic heart failure (CHF). Cardiac resynchronization therapy (CRT) has beneficial effects on symptoms and cardiac remodeling in CHF. However, its impact on the inflammatory immune response remains controversial. We aimed to study the impact of CRT on T cells in heart failure (HF) patients. METHODS: Thirty-nine HF patients were evaluated before CRT (T0) and six months later (T6). Quantification of T cells, their subsets, and their functional characterization, after in vitro stimulation, were evaluated by flow cytometry. RESULTS: T regulatory (Treg) cells were decreased in CHF patients (healthy group (HG): 1.08 ± 0.50 versus (heart failure patients (HFP)-T0: 0.69 ± 0.40, P = 0.022) and remaining diminished after CRT (HFP-T6: 0.61 ± 0.29, P = 0.003). Responders (R) to CRT presented a higher frequency of T cytotoxic (Tc) cells producing IL-2 at T0 compared with non-responders (NR) (R: 36.52 ± 12.55 versus NR: 24.71 ± 11.66, P = 0.006). After CRT, HF patients presented a higher percentage of Tc cells expressing TNF-α and IFN-γ (HG: 44.50 ± 16.62 versus R: 61.47 ± 20.54, P = 0.014; and HG: 40.62 ± 15.36 versus R: 52.39 ± 18.66, P = 0.049, respectively). CONCLUSION: The dynamic of different functional T cell subpopulations is significantly altered in CHF, which results in an exacerbated pro-inflammatory response. Even after CRT, it seems that the inflammatory condition underlying CHF continues to evolve with the progression of the disease. This could be due, at least in part, to the inability to restore Treg cells levels. TRIAL REGISTRATION: Observational and prospective study with no trial registration.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy/adverse effects , T-Lymphocytes, Regulatory , Prospective Studies , Heart Failure/diagnosis , Heart Failure/therapy , Heart , Chronic Disease , Treatment Outcome
3.
BMC Cardiovasc Disord ; 23(1): 558, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968611

ABSTRACT

BACKGROUND AND AIMS: Monocytes and dendritic cells (DC) are both key inflammatory cells, with recognized effects on cardiac repair. However, there are distinct subsets of monocytes with potential for beneficial or detrimental effects on heart failure (HF) pathogenesis. The connection between reverse cardiac remodelling, the potential anti-inflammatory effect of cardiac resynchronization therapy (CRT) and monocytes and DC homeostasis in HF is far from being understood. We hypothesized that monocytes and DC play an important role in cardiac reverse remodelling and CRT response. Therefore, we aimed to assess the potential role of baseline peripheral levels of blood monocytes and DC subsets and their phenotypic and functional activity for CRT response, in HF patients. As a secondary objective, we aimed to evaluate the impact of CRT on peripheral blood monocytes and DC subsets, by comparing baseline and post CRT circulating levels and phenotypic and functional activity. METHODS: Forty-one patients with advanced HF scheduled for CRT were included in this study. The quantification and phenotypic determination of classical (cMo), intermediate (iMo) and non-classical monocytes (ncMo), as well as of myeloid (mDC) and plasmacytoid DC (pDC) were performed by flow cytometry in a FACSCanto™II (BD) flow cytometer. The functional characterization of total monocytes and mDC was performed by flow cytometry in a FACSCalibur flow cytometer, after in vitro stimulation with lipopolysaccharide from Escherichia coli plus interferon (IFN)-γ, in the presence of Brefeldina A. Comparisons between the control and the patient group, and between responders and non-responders to CRT were performed. RESULTS: Compared to the control group, HF population presented a significantly lower frequency of pDC at baseline and a higher proportion of monocytes and mDC producing IL-6 and IL-1ß, both before and 6-months after CRT (T6). There was a remarkable decrease of cMo and an increase of iMo after CRT, only in responders. The responder group also presented higher ncMo values at T6 compared to the non-responder group. Both responders and non-responders presented a decrease in the expression of CD86 in all monocyte and DC populations after CRT. Moreover, in non-responders, the increased frequency of IL-6-producing DC persisted after CRT. CONCLUSION: Our study provides new knowledge about the possible contribution of pDC and monocytes subsets to cardiac reverse remodelling and response to CRT. Additionally, CRT is associated with a reduction on CD86 expression by monocytes and DC subsets and in their potential to produce pro-inflammatory cytokines, contributing, at least in part, for the well described anti-inflammatory effects of CRT in HF patients.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy/adverse effects , Monocytes , Interleukin-6 , Heart Failure/diagnosis , Heart Failure/therapy , Dendritic Cells , Anti-Inflammatory Agents
4.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Article in English | MEDLINE | ID: mdl-34559222

ABSTRACT

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Subject(s)
Platelet Factor 4/metabolism , Reactive Oxygen Species/metabolism , Scleroderma, Systemic , Toll-Like Receptor 9 , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dendritic Cells/metabolism , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
5.
Eur J Immunol ; 50(1): 119-129, 2020 01.
Article in English | MEDLINE | ID: mdl-31424086

ABSTRACT

Systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and primary Sjögrens syndrome (pSS) are clinically distinct systemic autoimmune diseases (SADs) that share molecular pathways. We quantified the frequency of circulating immune-cells in 169 patients with these SADs and 44 healty controls (HC) using mass-cytometry and assessed the diagnostic value of these results. Alterations in the frequency of immune-cell subsets were present in all SADs compared to HC. Most alterations, including a decrease of CD56hi NK-cells in SSc and IgM+ Bcells in pSS, were disease specific; only a reduced frequency of plasmacytoid dendritic cells was common between all SADs Strikingly, hierarchical clustering of SSc patients identified 4 clusters associated with different clinical phenotypes, and 9 of the 12 cell subset-alterations in SSc were also present during the preclinical-phase of the disease. Additionally, we found a strong association between the use of prednisone and alterations in B-cell subsets. Although differences in immune-cell frequencies between these SADs are apparent, the discriminative value thereof is too low for diagnostic purposes. Within each disease, mass cytometry analyses revealed distinct patterns between endophenotypes. Given the lack of tools enabling early diagnosis of SSc, our results justify further research into the value of cellular phenotyping as a diagnostic aid.


Subject(s)
Flow Cytometry/methods , Lupus Erythematosus, Systemic/immunology , Scleroderma, Systemic/immunology , Sjogren's Syndrome/immunology , Adult , Aged , Female , Humans , Lupus Erythematosus, Systemic/diagnosis , Male , Middle Aged , Phenotype , Scleroderma, Systemic/diagnosis , Sjogren's Syndrome/diagnosis
6.
J Autoimmun ; 111: 102444, 2020 07.
Article in English | MEDLINE | ID: mdl-32284212

ABSTRACT

OBJECTIVE: To analyze how monocyte and macrophage exposure to CXCL4 induces inflammatory and fibrotic processes observed in Systemic sclerosis (SSc) patients. METHODS: In six independent experiments, monocytes of healthy controls (HC) and SSc patients were stimulated with CXCL4, TLR-ligands, IFNɑ or TGFß and the secretion of cytokines in the supernatant was assessed by multiplex immunoassays. PDGF-BB production by monocyte-derived macrophages was quantified using immunoassays. The number of monocytes and PDGF-BB in circulation was quantified in HC and SSc patients with the Sysmex XT-1800i haematology counter and immunoassays. Intracellular PDGF-BB was quantified in monocytes by Western blot. PDGF-receptor inhibition was achieved using siRNA-mediated knockdown or treatment with Crenolanib. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblasts was analyzed by qPCR, ELISA and ECM deposition assays. RESULTS: SSc and HC monocytes released PDGF-BB upon stimulation with CXCL4. Conversely, TLR ligands, IFNɑ or TGFß did not induce PDGF-bb release. PDGF-BB plasma levels were significantly (P = 0.009) higher in diffuse SSc patients (n = 19), compared with HC (n = 21). In healthy dermal fibroblasts, PDGF-BB enhanced TNFɑ-induced expression of inflammatory cytokines and increased ECM production. Comparable results were observed in fibroblasts cultured in supernatant taken from macrophages stimulated with CXCL4. This effect was almost completely abrogated by inhibition of the PDGF-receptor using Crenolanib. CONCLUSION: Our findings demonstrate that CXCL4 can drive fibroblast activation indirectly via PDGF-BB production by myeloid cells. Hence, targeting PDGF-BB or CXCL4-induced PDGF-BB release could be clinically beneficial for patients with SSc.


Subject(s)
Becaplermin/metabolism , Fibroblasts/immunology , Inflammation/immunology , Macrophages/immunology , Monocytes/immunology , Platelet Factor 4/metabolism , Scleroderma, Systemic/immunology , Adult , Aged , Benzimidazoles/pharmacology , Cells, Cultured , Cytokines/metabolism , Female , Humans , Male , Middle Aged , Piperidines/pharmacology , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
7.
Rheumatology (Oxford) ; 59(9): 2258-2263, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31840182

ABSTRACT

OBJECTIVES: SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. METHODS: Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-ß1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. RESULTS: Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-ß and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-ß signalling. CONCLUSION: These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-ß dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


Subject(s)
Fibroblasts/metabolism , Osteonectin/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Transforming Growth Factor beta1/genetics , Case-Control Studies , Cells, Cultured , Extracellular Matrix/genetics , Extracellular Matrix Proteins/genetics , Fibrosis , Humans , RNA, Messenger/genetics , Signal Transduction/genetics , Skin/cytology , Transcriptional Activation/genetics
8.
Rheumatology (Oxford) ; 59(2): 426-438, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31377797

ABSTRACT

OBJECTIVE: To examine the role of Tie2 signalling in macrophage activation within the context of the inflammatory synovial microenvironment present in patients with RA and PsA. METHODS: Clinical responses and macrophage function were examined in wild-type and Tie2-overexpressing (Tie2-TG) mice in the K/BxN serum transfer model of arthritis. Macrophages derived from peripheral blood monocytes from healthy donors, RA and PsA patients, and RA and PsA synovial tissue explants were stimulated with TNF (10 ng/ml), angiopoietin (Ang)-1 or Ang-2 (200 ng/ml), or incubated with an anti-Ang2 neutralizing antibody. mRNA and protein expression of inflammatory mediators was analysed by quantitative PCR, ELISA and Luminex. RESULTS: Tie2-TG mice displayed more clinically severe arthritis than wild-type mice, accompanied by enhanced joint expression of IL6, IL12B, NOS2, CCL2 and CXCL10, and activation of bone marrow-derived macrophages in response to Ang-2 stimulation. Ang-1 and Ang-2 significantly enhanced TNF-induced expression of pro-inflammatory cytokines and chemokines in macrophages from healthy donors differentiated with RA and PsA SF and peripheral blood-derived macrophages from RA and PsA patients. Both Ang-1 and Ang-2 induced the production of IL-6, IL-12p40, IL-8 and CCL-3 in synovial tissue explants of RA and PsA patients, and Ang-2 neutralization suppressed the production of IL-6 and IL-8 in the synovial tissue of RA patients. CONCLUSION: Tie2 signalling enhances TNF-dependent activation of macrophages within the context of ongoing synovial inflammation in RA and PsA, and neutralization of Tie2 ligands might be a promising therapeutic target in the treatment of these diseases.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Psoriatic/metabolism , Arthritis, Rheumatoid/metabolism , Macrophage Activation/physiology , Receptor, TIE-2/metabolism , Synovial Membrane/metabolism , Animals , Arthritis, Experimental/pathology , Arthritis, Psoriatic/pathology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Mice , Mice, Transgenic , Signal Transduction/physiology , Synovial Fluid/metabolism , Synovial Membrane/pathology
9.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971928

ABSTRACT

Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4+ T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naïve Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORγt in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4+ T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4+ T cell-mediated diseases.


Subject(s)
Autocrine Communication/immunology , Intracellular Signaling Peptides and Proteins/immunology , Membrane Glycoproteins/immunology , Semaphorins/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Cell Differentiation/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Humans , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Th1 Cells/pathology , Th17 Cells/pathology , Th2 Cells/pathology
10.
Int J Mol Sci ; 21(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333969

ABSTRACT

Angiopoietin-2 (Ang-2), a ligand of the tyrosine kinase receptor Tie2, is essential for vascular development and blood vessel stability and is also involved in monocyte activation. Here, we examined the role of Ang-2 on monocyte activation in patients with systemic sclerosis (SSc). Ang-2 levels were measured in serum and skin of healthy controls (HCs) and SSc patients by ELISA and array profiling, respectively. mRNA expression of ANG2 was analyzed in monocytes, dermal fibroblasts, and human pulmonary arterial endothelial cells (HPAECs) by quantitative PCR. Monocytes were stimulated with Ang-2, or with serum from SSc patients in the presence of a Tie2 inhibitor or an anti-Ang2 neutralizing antibody. Interleukin (IL)-6 and IL-8 production was analyzed by ELISA. Ang-2 levels were elevated in the serum and skin of SSc patients compared to HCs. Importantly, serum Ang-2 levels correlated with clinical disease parameters, such as skin involvement. Lipopolysaccharide (LPS) LPS, R848, and interferon alpha2a (IFN-α) stimulation up-regulated the mRNA expression of ANG2 in monocytes, dermal fibroblasts, and HPAECs. Finally, Ang-2 induced the production of IL-6 and IL-8 in monocytes of SSc patients, while the inhibition of Tie2 or the neutralization of Ang-2 reduced the production of both cytokines in HC monocytes stimulated with the serum of SSc patients. Therefore, Ang-2 induces inflammatory activation of SSc monocytes and neutralization of Ang-2 might be a promising therapeutic target in the treatment of SSc.


Subject(s)
Angiopoietin-2/metabolism , Biomarkers , Inflammation Mediators/metabolism , Monocytes/metabolism , Scleroderma, Systemic/etiology , Scleroderma, Systemic/metabolism , Adult , Aged , Angiopoietin-2/blood , Case-Control Studies , Cytokines/metabolism , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Scleroderma, Systemic/pathology , Skin/metabolism
11.
Ann Rheum Dis ; 78(9): 1249-1259, 2019 09.
Article in English | MEDLINE | ID: mdl-31126957

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS: In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS: Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS: We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.


Subject(s)
Core Binding Factor Alpha 3 Subunit/genetics , Dendritic Cells/metabolism , Gene Expression Regulation , RNA/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Animals , Core Binding Factor Alpha 3 Subunit/biosynthesis , Dendritic Cells/pathology , Disease Models, Animal , Disease Progression , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Humans , Mice , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/metabolism
12.
Ann Rheum Dis ; 78(4): 529-538, 2019 04.
Article in English | MEDLINE | ID: mdl-30793699

ABSTRACT

BACKGROUND AND OBJECTIVE: Systemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes. METHODS: Chromatin immunoprecipitation followed by sequencing (ChIPseq) for histone marks H3K4me3 and H3K27ac was performed on monocytes of nine healthy controls and 14 patients with SSc. RNA sequencing was performed in parallel to identify aberrantly expressed genes and their correlation with the levels of H3K4me3 and H3K27ac located nearby their transcription start sites. ChIP-qPCR assays were used to verify the role of bromodomain proteins, H3K27ac and STATs on IFN-responsive gene expression. RESULTS: 1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively, in SSc monocytes. The expression of 381 genes was directly and significantly proportional to the levels of such chromatin marks present near their transcription start site. Genes correlated to altered histone marks were enriched for immune, IFN and antiviral pathways and presented with recurrent binding sites for IRF and STAT transcription factors at their promoters. IFNα induced the binding of STAT1 and STAT2 at the promoter of two of these genes, while blocking acetylation readers using the bromodomain BET family inhibitor JQ1 suppressed their expression. CONCLUSION: SSc monocytes have altered chromatin marks correlating with their IFN signature. Enzymes modulating these reversible marks may provide interesting therapeutic targets to restore monocyte homeostasis to treat or even prevent SSc.


Subject(s)
Epigenesis, Genetic , Histone Code/genetics , Monocytes/immunology , Scleroderma, Systemic/genetics , Adult , Aged , Azepines/pharmacology , Case-Control Studies , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/immunology , Female , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Histones/genetics , Humans , Interferon-alpha/immunology , Male , Middle Aged , Molecular Targeted Therapy/methods , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Scleroderma, Systemic/immunology , Triazoles/pharmacology
13.
J Autoimmun ; 89: 162-170, 2018 05.
Article in English | MEDLINE | ID: mdl-29371048

ABSTRACT

OBJECTIVE: MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS: The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS: 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS: Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.


Subject(s)
Endothelial Cells/physiology , Fibroblasts/physiology , MicroRNAs/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Adult , Aged , Cohort Studies , Female , Fibrosis , Genetic Testing , Humans , Male , Middle Aged , Up-Regulation
14.
Inflamm Res ; 67(2): 169-177, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29127442

ABSTRACT

OBJECTIVE: To investigate the ex vivo pro-inflammatory properties of classical and non-classical monocytes as well as myeloid dendritic cells (mDCs) in systemic sclerosis (SSc) patients. METHODS: Spontaneous production of CXCL10, CCL4, CXCL8 and IL-6 was intracellularly evaluated in classical, non-classical monocytes and Siglec-3-expressing mDCs from peripheral blood of SSc patients and healthy controls (HC) through flow cytometry. In addition, production of these cytokines was determined upon toll-like receptor (TLR) 4 plus Interferon-γ (IFN-γ) stimulation. RESULTS: The frequency of non-classical monocytes spontaneously producing CXCL10 was increased in both limited (lcSSc) and diffuse cutaneous (dcSSC) subsets of SSc patients and CCL4 was augmented in dcSSc patients. The proportion of CCL4-producing mDCs was also elevated in dcSSc patients and the percentage of mDCS producing CXCL10 only in lcSSc patients. Upon stimulation, the frequency of non-classical monocytes expressing CXCL8 was increased in both patient groups and mDCs expressing CXCL8 only in lcSSc. Moreover, these parameters in unsupervised clustering analysis identify a subset of patients which are characterized by lung fibrosis and reduced pulmonary function. CONCLUSIONS: These data point towards a role of activated non-classical monocytes and mDCs producing enhanced levels of proinflammatory cytokines in SSc, potentially contributing to lung fibrosis.


Subject(s)
Chemokine CCL4/metabolism , Chemokine CXCL10/metabolism , Dendrites/metabolism , Interleukin-8/metabolism , Monocytes/metabolism , Myeloid Cells/metabolism , Scleroderma, Systemic/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Adult , Aged , Cytokines/biosynthesis , Female , Humans , Interferons/metabolism , Male , Middle Aged , Pulmonary Fibrosis/metabolism , Toll-Like Receptor 4/metabolism
15.
Cardiovasc Diabetol ; 13: 101, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24934236

ABSTRACT

BACKGROUND: Diabetic patients have a significantly worse prognosis after an acute myocardial infarction (AMI) than their counterparts. Previous studies have shown that the number of circulating endothelial progenitor cells (EPCs) significantly increase early after an AMI in normoglycemic patients. However, it is well known that type 2 diabetes mellitus (DM) is associated with impaired function and reduced circulating EPCs levels. Nonetheless, few studies have analyzed EPCs response of diabetics to an AMI and the EPC response of pre-diabetic patients has not been reported yet. Therefore, we hypothesized that in the acute phase of an AMI, diabetic and pre-diabetics have lower circulating EPCs levels than patients with normal glucose metabolism. We also evaluated the possible capacity of chronic antidiabetic treatment in the recovery of EPCs response to an AMI in diabetics. METHODS: One-hundred AMI patients were prospectively enrolled in the study. Using the high-performance flow cytometer FACSCanto II, circulating EPCs (CD45dimCD34+KDR+ and CD45dimCD133+KDR+ cells) were quantified, within the first 24 hours of admission. In addition, as an indirect functional parameter, we also analyzed the fraction of EPCs coexpressing the homing marker CXCR4. RESULTS: We found that in the acute phase of an AMI, diabetic patients presented significantly lower levels of circulating CD45dimCD34+KDR+ and CD45dimCD133+KDR+ EPCs by comparison with nondiabetics, with a parallel decrease in the subpopulations CXCR4+ (p < 0.001). Indeed, this study suggests that the impaired response of EPCs to an AMI is an early event in the natural history of DM, being present even in pre-diabetes. Our results, also demonstrated that numbers of all EPCs populations were inversely correlated with HbA1c (r = -0.432, p < 0.001 for CD45dimCD34+KDR+ cells). Finally, this study suggests that previous chronic insulin therapy (but not oral antidiabetic drugs) attenuate the deficient response of diabetic EPCs to an AMI. CONCLUSION: This study indicates that there is a progressive decrease in EPCs levels, from pre-diabetes to DM, in AMI patients. Moreover, glycemic control seems to be determinant for circulating EPCs levels presented in the acute phase of an AMI and chronic insulin therapy may probably attenuate the deficit in EPCs pool seen in diabetics.


Subject(s)
Diabetes Mellitus, Type 2/blood , Endothelial Cells/metabolism , Glycemic Index/physiology , Myocardial Infarction/blood , Prediabetic State/blood , Stem Cells/metabolism , Aged , Cohort Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Prospective Studies
16.
Brain Behav Immun ; 39: 186-93, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24412212

ABSTRACT

High intensity training regimens appear to put athletes at a higher risk of illness. As these have been linked to alterations in the proportions of differentiated T cells, how training load affects these populations could have important implications for athlete susceptibility to disease. This study examined the effect of a winter training season on the proportions of circulating naïve and memory T cells subsets of high competitive level swimmers. Blood samples were taken at rest at 4 time-points during the season: before the start of the season (t0-September), after 7weeks of an initial period of gradually increasing training load (t1-November), after 6weeks of an intense training cycle (t2-February) and 48h after the main competition (t3-April) and from eleven non-athlete controls at 2 similar time-points (t2 and t3). CD4, CD8 and gamma-delta (γδ) T cells expressing the naïve (CCR7(+)CD45RA(+)), central-memory (CM-CCR7(+)CD45RA(-)), effector-memory (EM-CCR7(-)CD45RA(-)) and terminal effector (TEMRA-CCR7(-)CD45RA(+)) were quantified by flow cytometry. Statistical analyses were performed using multilevel modeling regression. Both T CD4(+) naïve and CM presented a linear increase in response to the first moment of training exposure, and had an exponential decrease until the end of the training exposure. As for TCD4(+) EM, changes were observed from t2 until the end of the training season with an exponential trend, while TCD4(+) TEMRA increased linearly throughout the season. TCD8(+) naïve increased at t1 and decreased exponentially thereafter. TCD8(+) TEMRA values decreased at t1 and increased exponentially until t3. γδT-EM had an increase at t1 and an exponential decrease afterwards. In contrast, γδT-TEMRA decreased at t1 and exponentially increased during the remaining 20weeks of training. An increase in TEMRA and EM T cells alongside a decrease in naïve T cells could leave athletes more susceptible to illness in response to variation in training stimulus during the season.


Subject(s)
Swimming/physiology , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Athletes , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunologic Memory , Male , Young Adult
17.
Eur J Clin Pharmacol ; 70(10): 1181-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25048407

ABSTRACT

BACKGROUND: Endothelial progenitor stem cells (EPCs) are mobilized to the peripheral circulation in response to myocardial ischemia, playing a crucial role in vascular repair. Statins have been shown to stimulate EPCs. However, neither the impact of previous statin therapy on EPC response of acute myocardial infarction (AMI) patients nor the effect of post-AMI high-intensity statin therapy on the evolution of circulating EPC levels has yet been addressed. Therefore, we aimed to compare circulating EPC levels between patients receiving long-term statin therapy before the AMI and statin-naive patients and to assess the impact of high-intensity statin therapy at discharge on the evolution of circulating EPCs post-AMI. METHODS: This is a prospective observational study of 100 AMI patients. Circulating EPCs (CD45dimCD34 + KDR + cells) and their subpopulation coexpressing the homing marker CXCR4 were quantified by the high-performance flow cytometer FACSCanto II in whole blood, in two different moments: within the first 24 h of admission and 3 months post-AMI. Patients were followed up clinically for 2 years. RESULTS: Patients previously treated with statins had significantly higher levels of EPCs coexpressing CXCR4 (1.9 ± 1.4 vs. 1.3 ± 1.0 cells/1,000,000 events, p = 0.031) than statin-naive patients. In addition, the subanalysis of diabetics (N = 38) also revealed that patients previously on statins had significantly greater numbers of both CD45dimCD34 + KDR + CXCR4+ cells (p = 0.024) and CD45dimCD34 + KDR + CD133+ cells (p = 0.022) than statin-naive patients. Regarding the evolution of EPC levels after the AMI, patients not on a high-intensity statin therapy at discharge had a significant reduction of CD45dimCD34 + KDR + and CD45dimCD34 + KDR + CXCR4+ cells from baseline to 3 months follow-up (p = 0.031 and p = 0.005, respectively). However, patients discharged on a high-intensity statin therapy maintained circulating levels of all EPC populations, presenting at 3 months of follow-up significantly higher EPC levels than patients not on an intensive statin therapy. Moreover, the high-intensity statin treatment group had significantly better clinical outcomes during the 2-year follow-up period than patients not discharged on a high-intensity statin therapy. CONCLUSION: Chronic statin therapy prior to an AMI strongly enhances the response of EPCs to myocardial ischemia, even in diabetic patients. Furthermore, high-intensity statin therapy after an AMI prevents the expected decrease of circulating EPC levels during follow-up. These results reinforce the importance of an early and intensive statin therapy in AMI patients.


Subject(s)
Endothelial Progenitor Cells/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Aged , Female , Flow Cytometry , Follow-Up Studies , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Middle Aged , Myocardial Infarction/drug therapy , Prospective Studies , Time Factors , Treatment Outcome
18.
Pacing Clin Electrophysiol ; 37(6): 731-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24383551

ABSTRACT

BACKGROUND: It would be important to better identify heart failure (HF) patients most likely to respond to cardiac resynchronization therapy (CRT). Because endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular endothelium integrity, we hypothesize that patients who have higher circulating EPCs levels have greater neovascularization potential and are more prone to be responders to CRT. METHODS: Prospective study of 30 consecutive patients, scheduled for CRT. Echocardiographic evaluation was performed before implant and 6 months after. Responders to CRT were defined as patients who were still alive, have not been hospitalized for HF management, and demonstrated ≥15% reduction in left ventricular end-systolic volume (LVESV) at the 6-month follow-up. EPCs were quantified before CRT, from peripheral blood, by flow cytometry using five different conjugated antibodies: anti-CD34, anti-KDR, anti-CD133, anti-CD45, and anti-CXCR4. We quantified five different populations of angiogenic cells: CD133(+) /CD34(+) cells, CD133(+) /KDR(+) cells, CD133(+) /CD34(+) /KDR(+) cells, CD45(dim) CD34(+) /KDR(+) cells, and CD45(dim) CD34(+) /KDR(+) /CXCR4(+) cells. RESULTS: The proportion of responders to CRT at the 6-month follow-up was 46.7%. Responders to CRT presented higher baseline EPCs levels than nonresponders (0.0003 ± 0.0006% vs 0.0001 ± 0.0002%, P = 0.04, for CD34(+) /CD133(+) /KDR(+) and 0.0006 ± 0.0005% vs 0.0003 ± 0.0003%, P = 0.009, for CD45(dim) CD34(+) /KDR(+) /CXCR4(+) cells). In addition, baseline levels of CD45(dim) CD34(+) /KDR(+) /CXCR4(+) cells were positively correlated with the reduction of LVESV verified 6 months after CRT (r = 0.497, P = 0.008). CONCLUSIONS: High circulating EPCs levels may identify the subset of HF patients who are more likely to undergo reverse remodeling and benefit from CRT. Addition of EPCs levels assessment to current selection criteria may improve the ability to predict CRT response.


Subject(s)
Cardiac Resynchronization Therapy/methods , Endothelial Progenitor Cells/pathology , Heart Failure/pathology , Heart Failure/prevention & control , Outcome Assessment, Health Care/methods , Female , Heart Failure/diagnosis , Humans , Male , Middle Aged , Patient Selection , Prognosis , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
19.
Rheumatol Int ; 33(8): 2093-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23412693

ABSTRACT

UNLABELLED: With the discovery of Th17 cells, it became unclear whether rheumatoid arthritis (RA) is a Th1-mediated and/or a Th17-mediated disease. OBJECTIVE: The aim of this study was to identify and characterize the pro-inflammatory function of IL-17-producing T cell subsets (Th(c)17) in RA. Flow cytometry analysis was performed on peripheral blood from RA patients with inactive or low disease activity (LDA, n = 19) and moderate to high disease activity (HDA, n = 13) to analyze the number and functional activity of Th(c)17 and Th(c)1 cell subsets according to the frequency of IL-2-, TNF-α- and IFN-γ-producers cells, as well as, their cytokine amount. Additionally, 13 age-matched healthy volunteers were added to the study. Our data point to a slight increase in Tc17 frequency in RA patients, more evident in HDA, and a higher ability of Th17 to produce IL-17, whereas a lower production of TNF-α was noted either in Th17 or Tc17 cells, particularly from HDA. A similar decrease was observed in Th(c)1 for almost all studied pro-inflammatory cytokines, with the exception of IL-2, which was increased in Tc1 from LDA patients. Analysing the proportion of pro-inflammatory cytokines-producing cells, a polarization to a Tc1 phenotype seemed to occur in CD8 T cells, while CD4 T cells appear to be decreased in their frequency of IFN-γ-producing cells. Taken together, the functional plasticity features of Th17 and Tc17 cells suggest a particular contribution to the local cytokine production, pointing an underestimated role, namely of Tc1 and Tc17 cells, in the RA pathophysiology.


Subject(s)
Arthritis, Rheumatoid/blood , T-Lymphocyte Subsets/pathology , Th1 Cells/pathology , Th17 Cells/pathology , Adult , Arthritis, Rheumatoid/pathology , Cell Count , Female , Flow Cytometry , Humans , Male , Middle Aged
20.
Arthritis Rheumatol ; 75(2): 279-292, 2023 02.
Article in English | MEDLINE | ID: mdl-36482877

ABSTRACT

OBJECTIVE: This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS: Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS: We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION: NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.


Subject(s)
Nuclear Receptor Subfamily 4, Group A, Member 2 , Scleroderma, Systemic , Humans , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Gene Expression Regulation , Gene Expression , Scleroderma, Systemic/genetics , Fibrosis , Glycoproteins/metabolism , Antigens, CD1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL