Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur Spine J ; 32(3): 839-847, 2023 03.
Article in English | MEDLINE | ID: mdl-36645514

ABSTRACT

PURPOSE: Astronauts returning from long ISS missions have demonstrated an increased incidence of lumbar disc herniation accompanied by biomechanical and morphological changes associated with spine elongation. This research describes a ground-based study of the effects of an axial compression countermeasure Mk VI SkinSuit designed to reload the spine and reduce these changes before return to terrestrial gravity. METHODS: Twenty healthy male volunteers aged 21-36 without back pain participated. Each lay overnight on a Hyper Buoyancy Flotation (HBF) bed for 12 h on two occasions 6 weeks apart. On the second occasion participants donned a Mk VI SkinSuit designed to axially load the spine at 0.2 Gz during the last 4 h of flotation. Immediately after each exposure, participants received recumbent MRI and flexion-extension quantitative fluoroscopy scans of their lumbar spines, measuring differences between spine geometry and intervertebral kinematics with and without the SkinSuit. This was followed by the same procedure whilst weight bearing. Paired comparisons were performed for all measurements. RESULTS: Following Mk VI SkinSuit use, participants evidenced more flexion RoM at L3-4 (p = 0.01) and L4-5 (p = 0.003), more translation at L3-4 (p = 0.02), lower dynamic disc height at L5-S1 (p = 0.002), lower lumbar spine length (p = 0.01) and greater lordosis (p = 0.0001) than without the Mk VI SkinSuit. Disc cross-sectional area and volume were not significantly affected. CONCLUSION: The MkVI SkinSuit restores lumbar mobility and lordosis following 4 h of wearing during hyper buoyancy flotation in a healthy control population and may be an effective countermeasure for post space flight lumbar disc herniation.


Subject(s)
Intervertebral Disc Displacement , Intervertebral Disc , Lordosis , Weightlessness , Humans , Male , Biomechanical Phenomena , Lordosis/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Intervertebral Disc/diagnostic imaging
2.
J Strength Cond Res ; 31(1): 154-161, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27135470

ABSTRACT

Carvil, PA, Attias, J, Evetts, SN, Waldie, JM, and Green, DA. The effect of the gravity loading countermeasure skinsuit upon movement and strength. J Strength Cond Res 31(1): 154-161, 2017-Effective countermeasures against musculoskeletal deconditioning induced by microgravity and disuse are required. A simple alternative to provision of artificial gravity by centrifugation is compressive axial loading. The Russian "Pingvin" suit was the first wearable suit to apply this concept using bungee cords tethered around the shoulders and feet. However, poor loading characteristics and severe thermal and movement discomfort were reported. The gravity loading countermeasure skinsuit (GLCS) uses a bidirectional weave to generate staged axial loading from shoulders to feet, better mimicking how Earth's gravity induces progressive loading head to foot. The Mk III GLCS's loading was evaluated and tolerability assessed during maximal joint motion, ambulation, and selected strength exercises. Eight subjects (5 male and 3 female; 28 ± 3 years; 179 ± 0.1 cm and 74.8 ± 2.9 kg), having given written informed consent, had an Mk III GLCS individually tailored. Axial loading imparted, body height, joint range of motion (ROM), ambulation, and strength tests (12 repetition maximum) were performed in the GLCS and gym attire, with subjective (rating of perceived exertion, thermal comfort, movement discomfort and body control) ratings recorded throughout. Gravity loading countermeasure skinsuit provided significant axial loading when standing but significantly reduced knee (-13°), spinal (-28°) and shoulder flexion/extension ROM (-34°/-13°), in addition to Sit and Reach (-12.8 cm). No thermal issues were reported but there was an increase in subjective discomfort. Gravity loading countermeasure skinsuit did not significantly impede strength exercise, with the exception of shoulder press. The GLCS (Mk III) demonstrates potential as a countermeasure by providing tolerable, static axial loading. Furthermore, it may serve as an elasticlike strength exercise adjunct, which may have utility as a rehabilitation modality after further design refinement.


Subject(s)
Exercise/physiology , Gravity Suits , Range of Motion, Articular/physiology , Weightlessness Countermeasures , Adult , Centrifugation , Female , Gravity, Altered , Humans , Male , Russia , Walking , Weightlessness
4.
J Evid Based Med ; 13(2): 153-160, 2020 May.
Article in English | MEDLINE | ID: mdl-32449984

ABSTRACT

OBJECTIVE: The project aims to build a framework for conducting clinical trials for long-term interplanetary missions to contribute to innovation in clinical trials on Earth, especially around patient involvement and ownership. METHODS: We conducted two workshops in which participants were immersed in the speculative scenario of an interplanetary mission in which health problems emerged that required medical trials to resolve. The workshops used virtual reality and live simulation to mimic a zero-gravity environment and visual perception shifts and were followed by group discussion. RESULTS: Some key aspects for the framework that emerged from the workshops included: (a) approaches to be inclusive in the management of the trial, (b) approaches to be inclusive in designing the research project (patient preference trials, n-of-1 trials, designing clinical trials to be part of a future prospective meta-analysis, etc), (c) balancing the research needs and the community needs (eg, allocation of the participants based on both research and community need), (d) ethics and partnerships (ethics and consent issues and how they relate to partnerships and relationships). CONCLUSION: In identifying some key areas that need to be incorporated in future planning of clinical trials for interplanetary missions, we also identified areas that are relevant to engaging patients in clinical trials on Earth. We will suggest using the same methodology to facilitate more in-depth discussions on specific aspects of clinical trials in aerospace medicine. The methodology can be more widely used in other areas to open new inclusive conversations around innovating research methodology.


Subject(s)
Aerospace Medicine/methods , Clinical Trials as Topic/methods , Space Flight , Astronauts , Clinical Trials as Topic/ethics , Health Services Needs and Demand , Humans , Space Flight/methods
5.
NPJ Microgravity ; 3: 23, 2017.
Article in English | MEDLINE | ID: mdl-28894789

ABSTRACT

Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

SELECTION OF CITATIONS
SEARCH DETAIL