Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(23): 16161-16172, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38720418

ABSTRACT

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

2.
J Am Chem Soc ; 146(18): 12712-12722, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38655573

ABSTRACT

Persistent chiral organic open-shell systems have captured growing interest due to their potential applications in organic spintronic and optoelectronic devices. Nevertheless, the integration of configurationally stable chirality into an organic open-shell system continues to pose challenges in molecular design. The π-extended skeleton incorporated in spiro-conjugated carbocycles can provide robust chiroptical properties and a significant stabilization of the excited and ionic radical states. However, this approach has been relatively less explored in the design of persistent organic open-shell systems. We report here the (S,S)-, (R,R)-, and meso-isomers of doubly spiro-conjugated carbocycles featuring flat and rigid carbon-bridged para-phenylenevinylene (CPV) of different conjugation lengths connected by two spiro-carbon centers, which we denote D-spiro-CPV for its quasi-dimeric structure. Our synthetic method based on a double lithiation cyclization approach enables facile production of D-spiro-CPV. D-spiro-CPVs exhibit circularly polarized luminescence (CPL) with high fluorescence quantum yields (ΦFL) resulting in a high CPL brightness of 21 M-1 cm-1 and also exhibit high thermal and photostability. The monoradical cation of D-spiro-CPV absorbing near-infrared light is notably persistent, exhibiting a half-life of 570 h under ambient conditions due to doubly spiro-conjugative stabilization. Theoretical and electrochemical studies indicate the radical cation of D-spiro-CPVs presents a non-Aufbau electron filling, exhibiting inversion of the energy level of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbitals with the SOMO level even below the HOMO-1 level (double SHI effect). Our discoveries provide valuable insights into non-Aufbau molecules and the development of configurationally stable, optically active persistent radicals.

3.
Chemistry ; : e202402094, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031525

ABSTRACT

A comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species. The experimental absorption spectra of the aggregated species are accurately reproduced by quantum chemical calculations using the Spano's model, including excitonic coupling for the dimeric forms and full vibronic resolution of the absorption bands. The strong excitonic coupling taking place is key to understand the electronic structure of the dimeric aggregates and has been instrumental to disentangle the type of H-aggregation. This study is of relevance to get a better understanding of the molecular aggregation of organic p-conjugated chromophores and is useful as a guideline for the refinement of the engineering of molecular materials for which supramolecular design is required.

4.
Angew Chem Int Ed Engl ; : e202404014, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934233

ABSTRACT

We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D p-conjugated oligoyne chains is rare, given the minimal p-p intermolecular interactions of the weakly polarizable polyyne chain, as well as its flexibility that works against self assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV-Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the Monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.

5.
Angew Chem Int Ed Engl ; : e202408510, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881362

ABSTRACT

A triskelion-shaped triradical triindeno[1,2-a:1',2'-g:1'',2''-m]triphenylen-7-yl (1) and its internally fused derivative obtained by oxidative cyclization (2) were prepared in a straightforward synthetic sequence. Both compounds were confirmed to be triradicals and to possess intramolecular antiferromagnetic exchange interactions between spins, displaying a spin-frustrated doublet ground state with doublet-quartet energy gaps of -0.14 kcal/mol for 1 and -0.06 kcal/mol for 2. Despite their open-shell character, they were sufficiently stable to be handled under ambient conditions on a timescale of days. Both compounds could be reversibly reduced to mono-, di-, and trianions and oxidized to 1+ and 22+, with strong NIR absorptions (1800 to over 3200 nm) observed for all open-shell ions.

6.
J Am Chem Soc ; 145(50): 27295-27306, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38060544

ABSTRACT

A new family of molecules obtained by coupling Tröger's base unit with dicyanovinylene-terminated oligothiophenes of different lengths has been synthesized and characterized by steady-state stationary and transient time-resolved spectroscopies. Quantum chemical calculations allow us to interpret and recognize the properties of the stationary excited states as well as the time-dependent mechanisms of singlet-to-triplet coupling. The presence of the diazocine unit in Tröger's base derivatives is key to efficiently producing singlet-to-triplet intersystem crossing mediated by the role of the nitrogen atoms and of the almost orthogonal disposition of the two thiophene arms. Spin-orbit coupling-mediated interstate intersystem crossing (ISC) is activated by a symmetry-breaking process in the first singlet excited state with partial charge transfer character. This mechanism is a characteristic of these molecular triads since the independent dicyanovinylene-oligothiophene branches do not display appreciable ISC. These results show how Tröger's base coupling of organic chromophores can be used to improve the ISC efficiency and tune their photophysics.

7.
J Am Chem Soc ; 145(21): 11599-11610, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37129470

ABSTRACT

Helical bilayer nanographenes (HBNGs) are chiral π-extended aromatic compounds consisting of two π-π stacked hexabenzocoronenes (HBCs) joined by a helicene, thus resembling van der Waals layered 2D materials. Herein, we compare [9]HBNG, [10]HBNG, and [11]HBNG helical bilayers endowed with [9], [10], and [11]helicenes embedded in their structure, respectively. Interestingly, the helicene length defines the overlapping degree between the two HBCs (number of benzene rings involved in π-π interactions between the two layers), being 26, 14, and 10 benzene rings, respectively, according to the X-ray analysis. Unexpectedly, the electrochemical study shows that the lesser π-extended system [9]HBNG shows the strongest electron donor character, in part by interlayer exchange resonance, and more red-shifted values of emission. Furthermore, [9]HBNG also shows exceptional chiroptical properties with the biggest values of gabs and glum (3.6 × 10-2) when compared to [10]HBNG and [11]HBNG owing to the fine alignment in the configuration of [9]HBNG between its electric and magnetic dipole transition moments. Furthermore, spectroelectrochemical studies as well as the fluorescence spectroscopy support the aforementioned experimental findings, thus confirming the strong impact of the helicene length on the properties of this new family of bilayer nanographenes.

8.
Chemistry ; 29(27): e202300388, 2023 May 11.
Article in English | MEDLINE | ID: mdl-36749878

ABSTRACT

The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based on s-indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UV-Vis-NIR absorption, X-ray solid-state diffraction and quantum chemical calculations have been carried out. Studies of the different positive-/negative-charged species, both residing in the same skeletal π-conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo-hole and a pseudo-electron defect with certainly small reorganization energies for ambipolar charge transport.

9.
Molecules ; 28(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375198

ABSTRACT

The charged forms of π-conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum-chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals.

10.
Angew Chem Int Ed Engl ; 62(38): e202308780, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37533303

ABSTRACT

A combined experimental and theoretical study focused on the elucidation of the polymerization mechanism of the crystal monomer to crystal polymer reaction of a bisindenedione compound in the solid state. The experimental description and characterization of the polymer product have been reported elsewhere and, in this article, we address the first detailed description of the polymerization process. This reaction pathway consists of the initial formation of a triplet excimer state that relaxes to an intermolecularly bonded triplet state that is the starting point of the propagation step of the polymerization. The overall process can be visualized in the monomer starting state as an open zipper in which a cursor or slider is formed by light absorption and the whole zipper is then closed by propagation of the cursor. To this end, variable-temperature electron spin resonance (ESR), femtosecond transient absorption spectroscopy, and vibrational Raman spectroscopic data have been implemented in combination with quantum chemical calculations. The presented mechanistic insight is of great value to understand the intricacies of such an important reaction and to envisage and diversify the products produced thereof.

11.
Angew Chem Int Ed Engl ; 62(10): e202217124, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36511094

ABSTRACT

Incorporating non-hexagonal rings into polycyclic conjugated hydrocarbons (PCHs) can significantly affect their electronic and optoelectronic properties and chemical reactivities. Here, we report the first bottom-up synthesis of a dicyclohepta[a,g]heptalene-embedded PCH (1) with four continuous heptagons, which are arranged in a "Z" shape. Compared with its structural isomer bischrysene 1 R with only hexagonal rings, compound 1 presents a distinct antiaromatic character, especially the inner heptalene core, which possesses clear antiaromatic nature. In addition, PCH 1 exhibits a narrower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap than its benzenoid contrast 1 R, as verified by experimental measurements and theoretical calculations. Our work reported herein not only provides a new way to synthesize novel PCHs with non-alternant topologies but also offers the possibility to tune their electronic and optical properties.

12.
Angew Chem Int Ed Engl ; 62(32): e202305712, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37219544

ABSTRACT

Two series of regioisomeric dicyanomethylene substituted dithienodiazatetracenes with formal para- or ortho-quinodimethane subunits were synthesized and characterized. Whereas the para-isomers (p-n, diradical index y0 =0.01) are stable and isolable, the ortho-isomer (y0 =0.98) dimerizes into a covalent azaacene cage. Four elongated σ-CC bonds are formed and the former triisopropylsilyl(TIPS) -ethynylene groups transformed into cumulene units. The azaacene cage dimer (o-1)2 was characterized by X-ray single crystal structure analysis and temperature-dependent infrared (IR), electron paramagnetic resonance (EPR, solid-state), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV/Vis) spectroscopies (solution) indicating reformation of o-1.

13.
Angew Chem Int Ed Engl ; 62(42): e202311387, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37650244

ABSTRACT

Diradicals based on the Blatter units and connected by acetylene and alkene spacers have been prepared. All the molecules show sizably large diradical character and low energy singlet-triplet gaps. Their photo-physical properties concerning their lowest energy excited state have been studied in detail by steady-state and time-resolved absorption spectroscopy. We have fully identified the main optical absorption band and full absence of emission from the lowest energy excited state. A computational study has been also carried out that has helped to identify the presence of a conical intersection between the lowest energy excited state and the ground state which produces a highly efficient light-to-heat conversion of the absorbed radiation. Furthermore, an outstanding photo-thermal conversion 77.23 % has been confirmed, close to the highest in the diradicaloid field. For the first time, stable diradicals are applied to photo-thermal therapy of tumor cells with good stability and satisfactory performance at near-infrared region.

14.
Angew Chem Int Ed Engl ; 61(34): e202206976, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35785514

ABSTRACT

Circularly polarized luminescence (CPL) and Raman optical activity (ROA) were observed in a single spectroscopic experiment for a purely organic molecule, an event that had so far been limited to lanthanide-based complexes. The present observation was achieved for [16]cycloparaphenylene lemniscate, a double macrocycle constrained by a rigid 9,9'-bicarbazole subunit, which introduces a chirality source and allows the molecule to be resolved into two configurationally stable enantiomers. Distortion of oligophenylene loops in this lemniscular structure produces a large magnetic transition dipole moment while maintaining the π-conjugation-induced enhancement of the Raman signal, causing the appearance of the CPL/ROA couple. A two-photon mechanism is proposed to explain the population of the lowest-energy excited electronic state prior to the simultaneous emission-scattering event.

15.
Angew Chem Int Ed Engl ; 61(44): e202209138, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35986661

ABSTRACT

The conceptual connections between [4n] Hückel antiaromaticity, disjoint orbitals, correlation energy, pro-aromaticity and diradical character for a variety of extended π-conjugated systems, including some salient recent examples of nanographenes and polycyclic aromatic radicals, are provided based on their [4n]annulene peripheries. The realization of such structure-property relationships has led to a beneficial pedagogic exercise establishing design guidelines for diradicaloids. The antiaromatic fingerprint of the [4n]annulene peripheries upon orbital interactions due to internal covalent connectors gives insights into the diradicaloid property of a diversity of π-conjugated molecules that have fascinated chemists recently.

16.
Angew Chem Int Ed Engl ; 61(14): e202200688, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35088509

ABSTRACT

A through-space conjugated multi-phenalenyl triradical 1 a has been prepared and characterized. Partial occupancy of doubly degenerate molecular orbitals in 1 a leads to Jahn-Teller distortion, creating a molecular skeleton in which C2v doublet states are lower in energy than undistorted D3h doublet and quartet states. Triradical 1 a exists in an acute form in the solution state, whereas it adopts a preferred obtuse form in the solid state. The results of the investigation show that these two distorted forms are reversibly interconverted by thermal energy.

17.
Angew Chem Int Ed Engl ; 61(33): e202206680, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35696258

ABSTRACT

Four difluorenoheteroles having a central quinoidal core with the heteroring varying as furan, thiophene, its dioxide derivative and pyrrole have shown to be medium character diradicals. Solid-state structures, optical, photophysical, magnetic, and electrochemical properties have been discussed in terms of diradical character, variation of aromatic character and captodative effects (electron affinity). Organic field-effect transistors (OFETs) have been prepared, showing balanced hole and electron mobilities of the order of 10-3  cm2 V-1 s-1 or ambipolar charge transport which is first inferred from their redox amphoterism. Quantum chemical calculations show that the electrical behavior is originated from the medium diradical character which produces similar reorganization energies for hole and electron transports. The vision of a diradical as simultaneously bearing pseudo-hole and pseudo-electron defects might justify the reduced values of reorganization energies for both regimes. Structure-function relationships between diradical and ambipolar electrical behavior are revealed.

18.
Phys Chem Chem Phys ; 23(25): 13996-14003, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34151326

ABSTRACT

In this article the Raman and Raman Optical Activity (ROA) spectra of a series of enantiomeric twisted anthracenes are presented. The evolution of their vibrational spectra is understood in the context of the variation of π-electron delocalization as a result of the twisting imparted by the belt structure and in terms of the modulation of the resonance Raman/ROA effects which are photonic properties also tuned by anthracene twisting. The Raman/ROA vibrational spectra are simulated by several theoretical approaches to account for their vibrational and electronic properties including the theoretical evaluation of resonance effects. We furthermore incorporate a vibrational and ROA activity dissection analysis as provided in the Pyvib2 program valid to establish correlations among vibrational modes of different molecules with different electronic structures and equivalent vibrational dynamics. This paper is one of the very first attempts to use ROA spectroscopy in π-conjugated molecules with twisted and helical morphologies that contrast with the well-known cases of ROA studies of chiral helicenes in which the impact of π-electron delocalization in the electronic/photonic/vibrational (Raman/ROA) spectra is negligible.

19.
Angew Chem Int Ed Engl ; 60(33): 17887-17892, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34086392

ABSTRACT

A new compound (1) formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry, UV/Vis-NIR, IR, EPR, and transient spectroscopy. Self-assembly of 1 on a Au(111) surface has been investigated by scanning tunneling microscopy. Experiments have been rationalized by quantum chemical calculations. 1 exhibits a unique charge distribution in its anionic form, with a gradient of charge yielding a neat molecular in-plane electric dipole momentum, which transforms out-of-plane after surface deposition due to twisted→folded conformational change and to partial charge transfer from Au(111). Intermolecular van der Waals interactions and antiparallel trapezoidal shape fitting lead to the formation of an optimal dense on Au(111) two-dimensional assembly of 1.

20.
J Am Chem Soc ; 142(29): 12730-12742, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32589415

ABSTRACT

A three-dimensional π-conjugated polyradicaloid molecular cage c-Ph14, consisting of three Chichibabin's hydrocarbon motifs connected by two benzene-1,3,5-triyl bridgeheads, was synthesized. Compared with its linear model compound l-Ph4, the prism-like c-Ph14 has a more rigid structure, which shows significant impact on the molecular dynamics, stability, and electronic properties. A higher rotation energy barrier for the quinoidal biphenyl units was determined in c-Ph14 (15.64 kcal/mol) than that of l-Ph4 (11.40 kcal/mol) according to variable-temperature NMR measurements, leading to improved stability, a smaller diradical character, and an increased singlet-triplet energy gap. The pressure-dependent Raman spectroscopic studies on the rigid cage c-Ph14 revealed a quinoidal-to-aromatic transformation along the biphenyl bridges. In addition, the ellipsoidal cavity in the cage allowed selective encapsulation of fullerene C70 over C60, with an associate constant of about 1.43 × 104 M-1. Moreover, c-Ph14 and l-Ph4 exhibited similar redox behavior and their cationic species (c-Ph146+ and l-Ph42+) were obtained by chemical oxidation, and the structures were identified by X-ray crystallographic analysis. The biphenyl unit showed a twisted conformation in l-Ph42+ and remained coplanarity in c-Ph146+. Notably, molecules of c-Ph146+ form a one-dimensional columnar structure via close π-π stacking between the bridgeheads.

SELECTION OF CITATIONS
SEARCH DETAIL