Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
J Lipid Res ; 65(3): 100520, 2024 03.
Article in English | MEDLINE | ID: mdl-38369184

ABSTRACT

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Subject(s)
Amidohydrolases , Fluorescent Dyes , Ethanolamines/chemistry , Lipids
2.
EMBO J ; 39(15): e104749, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32525588

ABSTRACT

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Subject(s)
Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Ceramides/immunology , Immunologic Memory , Receptors, CCR5/deficiency , Animals , Antigens/genetics , CD4-Positive T-Lymphocytes/cytology , Ceramides/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Receptors, CCR5/immunology
3.
J Cell Sci ; 135(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35394045

ABSTRACT

Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Membrane Proteins , Phosphotransferases (Alcohol Group Acceptor) , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Cell Line, Tumor , Female , Humans , Membrane Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Axl Receptor Tyrosine Kinase
4.
Bioorg Chem ; 145: 107233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422591

ABSTRACT

Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.


Subject(s)
Ceramides , Oxidoreductases , Ceramides/pharmacology , Ceramides/chemistry , Oxidoreductases/metabolism , Cyclopropanes/pharmacology
5.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000599

ABSTRACT

Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.


Subject(s)
Extracellular Vesicles , Lipidomics , Lipids , Semen , Animals , Extracellular Vesicles/metabolism , Swine , Semen/metabolism , Semen/chemistry , Male , Lipids/analysis , Lipids/chemistry , Lipidomics/methods , Chromatography, High Pressure Liquid , Mass Spectrometry , Chromatography, Gel
6.
J Lipid Res ; 64(4): 100351, 2023 04.
Article in English | MEDLINE | ID: mdl-36868360

ABSTRACT

Sphingosine 1-phosphate lyase (SGPL1) insufficiency (SPLIS) is a syndrome which presents with adrenal insufficiency, steroid-resistant nephrotic syndrome, hypothyroidism, neurological disease, and ichthyosis. Where a skin phenotype is reported, 94% had abnormalities such as ichthyosis, acanthosis, and hyperpigmentation. To elucidate the disease mechanism and the role SGPL1 plays in the skin barrier we established clustered regularly interspaced short palindromic repeats-Cas9 SGPL1 KO and a lentiviral-induced SGPL1 overexpression (OE) in telomerase reverse-transcriptase immortalised human keratinocytes (N/TERT-1) and thereafter organotypic skin equivalents. Loss of SGPL1 caused an accumulation of S1P, sphingosine, and ceramides, while its overexpression caused a reduction of these species. RNAseq analysis showed perturbations in sphingolipid pathway genes, particularly in SGPL1_KO, and our gene set enrichment analysis revealed polar opposite differential gene expression between SGPL1_KO and _OE in keratinocyte differentiation and Ca2+ signaling genesets. SGPL1_KO upregulated differentiation markers, while SGPL1_OE upregulated basal and proliferative markers. The advanced differentiation of SGPL1_KO was confirmed by 3D organotypic models that also presented with a thickened and retained stratum corneum and a breakdown of E-cadherin junctions. We conclude that SPLIS associated ichthyosis is a multifaceted disease caused possibly by sphingolipid imbalance and excessive S1P signaling, leading to increased differentiation and an imbalance of the lipid lamellae throughout the epidermis.


Subject(s)
Ichthyosis , Sphingolipids , Humans , Calcium/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Lysophospholipids/metabolism , Sphingosine/genetics , Sphingosine/metabolism , Ichthyosis/genetics
7.
Antimicrob Agents Chemother ; 67(4): e0168722, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36920206

ABSTRACT

The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 µM, respectively, in Vero cells; EC50s of 2.2 and 1.9 µM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.


Subject(s)
Flavivirus , Neuroblastoma , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , West Nile Fever/drug therapy , Antiviral Agents/therapeutic use , Vero Cells , Neuroblastoma/drug therapy , Zika Virus Infection/drug therapy , Virus Replication
8.
Metabolomics ; 19(8): 70, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37548829

ABSTRACT

INTRODUCTION: This study has investigated the temporal disruptive effects of tributyltin (TBT) on lipid homeostasis in Daphnia magna. To achieve this, the study used Liquid Chromatography-Mass Spectrometry (LC-MS) analysis to analyze biological samples of Daphnia magna treated with TBT over time. The resulting data sets were multivariate and three-way, and were modeled using bilinear and trilinear non-negative factor decomposition chemometric methods. These methods allowed for the identification of specific patterns in the data and provided insight into the effects of TBT on lipid homeostasis in Daphnia magna. OBJECTIVES: Investigation of how are the changes in the lipid concentrations of Daphnia magna pools when they were exposed with TBT and over time using non-targeted LC-MS and advanced chemometric analysis. METHODS: The simultaneous analysis of LC-MS data sets of Daphnia magna samples under different experimental conditions (TBT dose and time) were analyzed using the ROIMCR method, which allows the resolution of the elution and mass spectra profiles of a large number of endogenous lipids. Changes obtained in the peak areas of the elution profiles of these lipids caused by the dose of TBT treatment and the time after its exposure are analyzed by principal component analysis, multivariate curve resolution-alternative least square, two-way ANOVA and ANOVA-simultaneous component analysis. RESULTS: 87 lipids were identified. Some of these lipids are proposed as Daphnia magna lipidomic biomarkers of the effects produced by the two considered factors (time and dose) and by their interaction. A reproducible multiplicative effect between these two factors is confirmed and the optimal approach to model this dataset resulted to be the application of the trilinear factor decomposition model. CONCLUSION: The proposed non-targeted LC-MS lipidomics approach resulted to be a powerful tool to investigate the effects of the two factors on the Daphnia magna lipidome using chemometric methods based on bilinear and trilinear factor decomposition models, according to the type of interaction between the design factors.


Subject(s)
Daphnia , Lipidomics , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics/methods , Lipids/analysis
9.
J Enzyme Inhib Med Chem ; 38(1): 343-348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36519337

ABSTRACT

Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.


Subject(s)
Acid Ceramidase , Neoplasms , Humans , Acid Ceramidase/antagonists & inhibitors , Apoptosis , Ceramides/chemistry , Small Molecule Libraries
10.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37298714

ABSTRACT

Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder caused by mutations in the gene-encoding acid sphingomyelinase (ASM). ASMD impacts peripheral organs in all patients, including the liver and spleen. The infantile and chronic neurovisceral forms of the disease also lead to neuroinflammation and neurodegeneration for which there is no effective treatment. Cellular accumulation of sphingomyelin (SM) is a pathological hallmark in all tissues. SM is the only sphingolipid comprised of a phosphocholine group linked to ceramide. Choline is an essential nutrient that must be obtained from the diet and its deficiency promotes fatty liver disease in a process dependent on ASM activity. We thus hypothesized that choline deprivation could reduce SM production and have beneficial effects in ASMD. Using acid sphingomyelinase knock-out (ASMko) mice, which mimic neurovisceral ASMD, we have assessed the safety of a choline-free diet and its effects on liver and brain pathological features such as altered sphingolipid and glycerophospholipid composition, inflammation and neurodegeneration. We found that the choline-free diet was safe in our experimental conditions and reduced activation of macrophages and microglia in the liver and brain, respectively. However, there was no significant impact on sphingolipid levels and neurodegeneration was not prevented, arguing against the potential of this nutritional strategy to assist in the management of neurovisceral ASMD patients.


Subject(s)
Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Mice , Animals , Niemann-Pick Disease, Type A/genetics , Sphingomyelin Phosphodiesterase/genetics , Choline , Sphingolipids , Sphingomyelins , Diet , Mice, Knockout , Disease Models, Animal
11.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674468

ABSTRACT

Breast cancer (BC) is the most common malignancy in women worldwide. While the main systemic treatment option is anthracycline-containing chemotherapy, chemoresistance continues to be an obstacle to patient survival. Carnitine palmitoyltransferase 1C (CPT1C) has been described as a poor-prognosis marker for several tumour types, as it favours tumour growth and hinders cells from entering senescence. At the molecular level, CPT1C has been associated with lipid metabolism regulation and important lipidome changes. Since plasma membrane (PM) rigidity has been associated with reduced drug uptake, we explored whether CPT1C expression could be involved in PM remodelling and drug chemoresistance. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) lipid analysis of PM-enriched fractions of MDA-MB-231 BC cells showed that CPT1C silencing increased PM phospholipid saturation, suggesting a rise in PM rigidity. Moreover, CPT1C silencing increased cell survival against doxorubicin (DOX) treatment in different BC cells due to reduced drug uptake. These findings, further complemented by ROC plotter analysis correlating lower CPT1C expression with a lower pathological complete response to anthracyclines in patients with more aggressive types of BC, suggest CPT1C as a novel predictive biomarker for BC chemotherapy.


Subject(s)
Breast Neoplasms , Carnitine O-Palmitoyltransferase , Drug Resistance, Neoplasm , Female , Humans , Anthracyclines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cell Membrane/metabolism , Down-Regulation
12.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806262

ABSTRACT

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Apoptosis , Autophagy , Cell Death , Cell Line, Tumor , Cell Survival , Endosomes , Fibroblasts , Mechanistic Target of Rapamycin Complex 1 , Mice , Sphingolipids/pharmacology , Sphingosine/analogs & derivatives
13.
FASEB J ; 34(9): 11816-11837, 2020 09.
Article in English | MEDLINE | ID: mdl-32666604

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.


Subject(s)
Biomarkers/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Genetic Therapy/methods , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Animals , Carnitine O-Palmitoyltransferase/genetics , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Liver/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/etiology , Obesity/metabolism , Oxidation-Reduction , Triglycerides/metabolism
14.
Org Biomol Chem ; 19(11): 2456-2467, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33650618

ABSTRACT

The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.


Subject(s)
Ceramides/metabolism , Fluorescent Dyes/chemical synthesis , Lipids/chemical synthesis , Oxidoreductases/metabolism , Palmitic Acids/chemistry , Animals , Cell Line , Click Chemistry , Fluorescence Resonance Energy Transfer , Humans , Mice , Spectrometry, Fluorescence , Tandem Mass Spectrometry
15.
Cell Mol Life Sci ; 77(14): 2839-2857, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31664461

ABSTRACT

Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.


Subject(s)
Annexin A6/genetics , Cholesterol/genetics , GTPase-Activating Proteins/genetics , Niemann-Pick Disease, Type C/genetics , rab GTP-Binding Proteins/genetics , Animals , CHO Cells , Carrier Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Cholesterol/metabolism , Cricetulus , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endosomes/genetics , Endosomes/metabolism , Humans , Membrane Proteins/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Protein Domains/genetics , Protein Transport/genetics , RNA, Small Interfering/genetics , rab7 GTP-Binding Proteins
16.
Int J Mol Sci ; 22(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34681567

ABSTRACT

Senile plaque formation as a consequence of amyloid-ß peptide (Aß) aggregation constitutes one of the main hallmarks of Alzheimer's disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aß production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Ceramides/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Erucic Acids/metabolism , Fatty Acids, Omega-3/adverse effects , Fatty Acids, Omega-6/adverse effects , Gangliosides/metabolism , Hippocampus/metabolism , Humans , Male , Mice , Mice, Transgenic
17.
J Org Chem ; 85(2): 419-429, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31860798

ABSTRACT

The synthesis of a series of vinylated analogues of sphingosine-1-phosphate together with their unambiguous configurational assignment by VCD methods is reported. Among them, compound RBM10-8 can irreversibly inhibit human sphingosine-1-phosphate lyase (hS1PL) while behaving also as an enzyme substrate. These findings, together with the postulated mechanism for S1PL activity, reinforce the role of RBM10-8 as a new mechanism-based hS1PL inhibitor.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Aldehyde-Lyases/chemistry , Amino Acid Sequence , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Stereoisomerism
18.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Article in English | MEDLINE | ID: mdl-31138606

ABSTRACT

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Subject(s)
Diet, High-Fat/adverse effects , Endocannabinoids/metabolism , Hypothalamus/metabolism , Obesity/etiology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Animals , Arachidonic Acids/metabolism , Female , Glycerides/metabolism , Male , Mice , Polyunsaturated Alkamides/metabolism , Sex Characteristics
19.
J Lipid Res ; 60(6): 1174-1181, 2019 06.
Article in English | MEDLINE | ID: mdl-30926626

ABSTRACT

New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format.


Subject(s)
Alkaline Ceramidase/metabolism , Sphingolipids/metabolism , Umbelliferones/metabolism , Cell Line , Ceramides/metabolism , HT29 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Microsomes/metabolism , Molecular Structure , RNA-Binding Proteins/metabolism
20.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31030513

ABSTRACT

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Subject(s)
Acid Ceramidase/metabolism , Molecular Imaging , A549 Cells , Acid Ceramidase/antagonists & inhibitors , Cell Survival , Enzyme Inhibitors/pharmacology , Humans , Molecular Probes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL