Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042796

ABSTRACT

Quantitative understanding of factors driving yield increases of major food crops is essential for effective prioritization of research and development. Yet previous estimates had limitations in distinguishing among contributing factors such as changing climate and new agronomic and genetic technologies. Here, we distinguished the separate contribution of these factors to yield advance using an extensive database collected from the largest irrigated maize-production domain in the world located in Nebraska (United States) during the 2005-to-2018 period. We found that 48% of the yield gain was associated with a decadal climate trend, 39% with agronomic improvements, and, by difference, only 13% with improvement in genetic yield potential. The fact that these findings were so different from most previous studies, which gave much-greater weight to genetic yield potential improvement, gives urgency to the need to reevaluate contributions to yield advances for all major food crops to help guide future investments in research and development to achieve sustainable global food security. If genetic progress in yield potential is also slowing in other environments and crops, future crop-yield gains will increasingly rely on improved agronomic practices.


Subject(s)
Agriculture/methods , Zea mays/growth & development , Zea mays/genetics , Climate , Climate Change , Crops, Agricultural/growth & development , Soil/chemistry , Soil Microbiology
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34556575

ABSTRACT

Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil-crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.

3.
Environ Sci Technol ; 55(1): 749-756, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33305567

ABSTRACT

The nitrogen (N) balance (i.e., the difference between N inputs and grain N removal) provides an indication of potential N losses to the environment. The magnitude of the N balance in a given year reflects the influence of random (e.g., climate, pest outbreak) and/or persistent (e.g., producer skills, soil type) factors over time. We assessed here the degree to which variation in magnitude of N balance across irrigated maize fields in the US Corn Belt was explained by persistent factors and identified the underlying drivers. Fields with large N balance were identified in specific ("ranking") years, and these same fields were assessed in other ("nonranking") years. Persistent factors explained up to half of the variation in N balance, with 70% of fields with N surplus in a given year also exhibiting surplus in other years. Persistence in large N balance was associated with fields growing maize continuously and applying higher N inputs without any yield advantage compared with other fields. There was also a relationship between N balance and mismatch between producer actual and recommended N rate. These findings highlight available room to reduce N excess in producer fields via improved management, providing a starting point to set priorities and inform policy.


Subject(s)
Fertilizers , Zea mays , Agriculture , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen/analysis , Soil
4.
Proc Natl Acad Sci U S A ; 113(52): 14964-14969, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27956604

ABSTRACT

Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today.


Subject(s)
Edible Grain , Food Supply , Africa South of the Sahara , Agriculture , Algorithms , Biodiversity , Conservation of Natural Resources , Crops, Agricultural , Humans , Nutritional Sciences , Regression Analysis
5.
Field Crops Res ; 234: 66-72, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31007365

ABSTRACT

Identifying cropping systems with small global warming potential (GWP) per unit of productivity is important to ensure food security while minimizing environmental footprint. During recent decades, double-season rice (DR) systems in central China have progressively shifted into single-crop, middle-season rice (MR) due to high costs and labor requirements of double-season rice. Ratoon rice (RR) has been proposed as an alternative system that reconciliates both high annual productivity and relatively low costs and labor requirements. Here we used on-farm data collected from 240 farmer fields planted with rice in 2016 to evaluate annual energy balance, environmental impact, and net profit of MR, DR, and RR cropping systems in central China. Energy factors, emission values, and commodity prices obtained from literature and official statistics were used to estimate energy balance, GWP, and economic profit. Average annual yield was 7.7, 15.3. and 13.2 Mg ha-1 for MR, DR, and RR systems, respectively. Average total annual energy input (36 GJ ha-1), GWP (9783 kg ha-1), and production cost (3057 $ ha-1) of RR were 35-48% higher than those of MR. However, RR achieved 72-129% higher annual grain yield (13.2 Mg ha-1), net energy yield (159 GJ ha-1), and net economic return (2330 $ ha-1) than MR. Compared with DR, RR produced statistically similar net energy yield while doubling the net economic return, with 32-42% lower energy input, production costs, and GWP. Consequently, RR exhibited significantly higher net energy ratio and benefit-to-cost ratio, and substantially lower yield-scaled GWP than the other two cropping systems. In the context of DR being replaced by MR, our analysis indicated that RR can be a viable option to achieve both high annual productivity and large positive energy balance and profit, while reducing the environmental impact.

6.
Bioscience ; 68(3): 194-203, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29662247

ABSTRACT

Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance-the difference between nitrogen inputs and nitrogen outputs in an agricultural production system-is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them.

7.
Agric For Meteorol ; 259: 364-373, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30224833

ABSTRACT

Water productivity (WP) is a robust benchmark for crop production in relation to available water supply across spatial scales. Quantifying water-limited potential (WPw) and actual on-farm (WPa) WP to estimate WP gaps is an essential first step to identify the most sensitive factors influencing production capacity with limited water supply. This study combines local weather, soil, and agronomic data, and crop modeling in a spatial framework to determine WPw and WPa at local and regional levels for rainfed cropping systems in 17 (maize) and 18 (wheat) major grain-producing countries representing a wide range of cropping systems, from intensive, high-yield maize in north America and wheat in west Europe to low-input, low-yield maize systems in sub-Saharan Africa and south Asia. WP was calculated as the quotient of either water-limited yield potential or actual yield, and simulated crop evapotranspiration. Estimated WPw upper limits compared well with maximum WP reported for field-grown crops. However, there was large WPw variation across regions with different climate and soil (CV = 29% for maize and 27% for wheat), which cautions against the use of generic WPw benchmarks and highlights the need for region-specific WPw. Differences in simulated evaporative demand, crop evapotranspiration after flowering, soil evaporation, and intensity of water stress around flowering collectively explained two thirds of the variation in WPw. Average WP gaps were 13 (maize) and 10 (wheat) kg ha-1 mm-1, equivalent to about half of their respective WPw. We found that non-water related factors (i.e., management deficiencies, biotic and abiotic stresses, and their interactions) constrained yield more than water supply in ca. half of the regions. These findings highlight the opportunity to produce more food with same amount of water, provided limiting factors other than water supply can be identified and alleviated with improved management practices. Our study provides a consistent protocol for estimating WP at local to regional scale, which can be used to understand WP gaps and their mitigation.

8.
Geoderma ; 324: 18-36, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30122789

ABSTRACT

In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled geo-referenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74 mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available.

9.
Field Crops Res ; 206: 21-32, 2017 May.
Article in English | MEDLINE | ID: mdl-28515571

ABSTRACT

Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems (e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

10.
Bioscience ; 66(4): 307-316, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-29599535

ABSTRACT

This article assesses sugarcane yield gaps (YG) in Brazil to determine the degree to which production can be increased without land expansion. In our scenario assessments, we evaluated how much of the projected sugarcane demand to 2024 (for both sugar and bioethanol) can be satisfied through YG closure. The current national average yield is 62% of yield potential estimated for rainfed conditions (i.e., a YG of 38%). Continuing the historical rate of yield gain is not sufficient to meet the projected demand without an area expansion by 5% and 45% for low- and high-demand scenarios, respectively. Closing the exploitable YG to 80% of potential yield would meet future sugarcane demand, with an 18% reduction in sugarcane area for the low-demand scenario or a 13% expansion for the high-demand scenario. A focus on accelerating yield gains to close current exploitable YG is a high priority for meeting future demand while minimizing pressure on additional land requirements.

12.
Proc Natl Acad Sci U S A ; 110(21): 8375-80, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23671096

ABSTRACT

Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.


Subject(s)
Carbon Footprint , Chemical Industry/methods , Chemical Industry/trends , Conservation of Natural Resources/methods , Fertilizers , Greenhouse Effect/prevention & control , Nitrogen , Chemical Industry/economics , Chemical Industry/legislation & jurisprudence , China , Conservation of Natural Resources/economics , Conservation of Natural Resources/trends
13.
Proc Natl Acad Sci U S A ; 109(4): 1074-9, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22232684

ABSTRACT

Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N · ha(-1)) and irrigation water inputs (272 mm or 2,720 m(3) ha(-1)). Although energy inputs (30 GJ · ha(-1)) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg · ha(-1) and 159 GJ · ha(-1), respectively) and lower GHG-emission intensity (231 kg of CO(2)e · Mg(-1) of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N(2)O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals.


Subject(s)
Agriculture/methods , Air Pollution/prevention & control , Greenhouse Effect , Nitrous Oxide/analysis , Soil/analysis , Zea mays/growth & development , Agricultural Irrigation/methods , Agricultural Irrigation/statistics & numerical data , Agriculture/statistics & numerical data , Air Pollution/statistics & numerical data , Databases, Factual , Fertilizers/statistics & numerical data , Nebraska , Nitrous Oxide/metabolism
14.
J Environ Qual ; 44(2): 356-67, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26023955

ABSTRACT

Historical trends and levels of nitrogen (N) budgets and emissions to air and water in the European Union and the United States are markedly different. Agro-environmental policy approaches also differ, with emphasis on voluntary or incentive-based schemes in the United States versus a more regulatory approach in the European Union. This paper explores the implications of these differences for attaining long-term policy targets for air and water quality. Nutrient surplus problems were more severe in the European Union than in the United States during the 1970s and 1980s. The EU Nitrates and National Emission Ceilings directives contributed to decreases in fertilizer use, N surplus, and ammonia (NH) emissions, whereas in the United States they stabilized, although NH emissions are still increasing. These differences were analyzed using statistical data for 1900-2005 and the global IMAGE model. IMAGE could reproduce NH emissions and soil N surpluses at different scales (European Union and United States, country and state) and N loads in the Rhine and Mississippi. The regulation-driven changes during the past 25 yr in the European Union have reduced public concerns and have brought agricultural N loads to the aquatic environment closer to US levels. Despite differences in agro-environmental policies and agricultural structure (more N-fixing soybean and more spatially separated feed and livestock production in the United States than in the European Union), current N use efficiency in US and EU crop production is similar. IMAGE projections for the IAASTD-baseline scenario indicate that N loading to the environment in 2050 will be similar to current levels. In the United States, environmental N loads will remain substantially smaller than in the European Union, whereas agricultural production in 2050 in the United States will increase by 30% relative to 2005, as compared with an increase of 8% in the European Union. However, in the United States, even rigorous mitigation with maximum recycling of manure N and a 25% reduction in fertilizer use will not achieve the policy target to halve the N export to the Gulf of Mexico.

15.
Proc Natl Acad Sci U S A ; 108(16): 6399-404, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21444818

ABSTRACT

China and other rapidly developing economies face the dual challenge of substantially increasing yields of cereal grains while at the same time reducing the very substantial environmental impacts of intensive agriculture. We used a model-driven integrated soil-crop system management approach to develop a maize production system that achieved mean maize yields of 13.0 t ha(-1) on 66 on-farm experimental plots--nearly twice the yield of current farmers' practices--with no increase in N fertilizer use. Such integrated soil-crop system management systems represent a priority for agricultural research and implementation, especially in rapidly growing economies.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Food Supply , Soil , Zea mays/growth & development , Agriculture/economics , China , Crops, Agricultural/economics , Fertilizers/economics
16.
Glob Chang Biol ; 19(12): 3822-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23801639

ABSTRACT

Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method.


Subject(s)
Agriculture/methods , Climate Change , Computer Simulation , Crops, Agricultural/growth & development , Databases, Factual , Weather , China , Crops, Agricultural/metabolism , Germany , Oryza/growth & development , Triticum/growth & development , United States , Water/metabolism , Zea mays/growth & development
17.
J Environ Monit ; 14(3): 738-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22293996

ABSTRACT

The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. We welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on our earlier paper, "Monitoring the World's Agriculture" (Sachs et al., Nature, 2010, 466, 558-560). In this response, we address their three main critiques labeled as 'the passive approach', 'the problem with uniform metrics' and 'the problem with composite metrics'. We expand on specific research questions at the core of the network design, on the distinction between key universal and site-specific metrics to detect change over time and across scales, and on the need for composite metrics in decision-making. We believe that simultaneously measuring indicators of the three pillars of sustainability (environmentally sound, social responsible and economically viable) in an effectively integrated monitoring system will ultimately allow scientists and land managers alike to find solutions to the most pressing problems facing global food security.


Subject(s)
Agriculture/statistics & numerical data , Environmental Monitoring/methods
18.
Ambio ; 51(5): 1158-1167, 2022 May.
Article in English | MEDLINE | ID: mdl-34845625

ABSTRACT

Urbanization has appropriated millions of hectares of cropland, and this trend will persist as cities continue to expand. We estimate the impact of this conversion as the amount of land needed elsewhere to give the same yield potential as determined by differences in climate and soil properties. Robust spatial upscaling techniques, well-validated crop simulation models, and soil, climate, and cropping system databases are employed with a focus on populous countries with high rates of land conversion. We find that converted cropland is 30-40% more productive than new cropland, which means that projection of food production potential must account for expected cropland loss to urbanization. Policies that protect existing farmland from urbanization would help relieve pressure on expansion of agriculture into natural ecosystems.


Subject(s)
Conservation of Natural Resources , Urbanization , Agriculture , Crops, Agricultural , Ecosystem
20.
Nat Food ; 2(10): 773-779, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37117974

ABSTRACT

Food security interventions and policies need reliable estimates of crop production and the scope to enhance production on existing cropland. Here we assess the performance of two widely used 'top-down' gridded frameworks (Global Agro-ecological Zones and Agricultural Model Intercomparison and Improvement Project) versus an alternative 'bottom-up' approach (Global Yield Gap Atlas). The Global Yield Gap Atlas estimates extra production potential locally for a number of sites representing major breadbaskets and then upscales the results to larger spatial scales. We find that estimates from top-down frameworks are alarmingly unlikely, with estimated potential production being lower than current farm production at some locations. The consequences of using these coarse estimates to predict food security are illustrated by an example for sub-Saharan Africa, where using different approaches would lead to different prognoses about future cereal self-sufficiency. Our study shows that foresight about food security and associated agriculture research priority setting based on yield potential and yield gaps derived from top-down approaches are subject to a high degree of uncertainty and would benefit from incorporating estimates from bottom-up approaches.

SELECTION OF CITATIONS
SEARCH DETAIL