Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669364

ABSTRACT

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Subject(s)
Diagnostic Imaging , Humans , Cryoelectron Microscopy
2.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33677602

ABSTRACT

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Subject(s)
Host-Pathogen Interactions/physiology , Phytophthora infestans/physiology , Proteins/metabolism , Transport Vesicles/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Protein Interaction Maps , SNARE Proteins/metabolism , Nicotiana/metabolism , Nicotiana/microbiology
3.
Plant J ; 106(5): 1431-1442, 2021 06.
Article in English | MEDLINE | ID: mdl-33764607

ABSTRACT

We expressed a bacterial glucan synthase (Agrobacterium GlgA) in the cytosol of developing endosperm cells in wheat grains, to discover whether it could generate a glucan from cytosolic ADP-glucose. Transgenic lines had high glucan synthase activity during grain filling, but did not accumulate glucan. Instead, grains accumulated very high concentrations of maltose. They had large volumes during development due to high water content, and very shrivelled grains at maturity. Starch synthesis was severely reduced. We propose that cytosolic glucan synthesized by the glucan synthase was immediately hydrolysed to maltose by cytosolic ß-amylase(s). Maltose accumulation resulted in a high osmotic potential in developing grain, drawing in excess water that stretched the seed coat and pericarp. Loss of water during grain maturation then led to shrinkage when the grains matured. Maltose accumulation is likely to account for the reduced starch synthesis in transgenic grains, through signalling and toxic effects. Using bioinformatics, we identify an isoform of ß-amylase likely to be responsible for maltose accumulation. Removal of this isoform through identification of TILLING mutants or genome editing, combined with co-expression of heterologous glucan synthase and a glucan branching enzyme, may in future enable elevated yields of carbohydrate through simultaneous accumulation of starch and cytosolic glucan.


Subject(s)
Glucosyltransferases/metabolism , Maltose/metabolism , Starch/metabolism , Triticum/genetics , Agrobacterium/enzymology , Agrobacterium/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Metabolism , Cytosol/metabolism , Edible Grain , Endosperm/enzymology , Endosperm/genetics , Glucosyltransferases/genetics , Mutation , Phylogeny , Plants, Genetically Modified , Transgenes , Triticum/enzymology
4.
Arch Virol ; 166(6): 1547-1563, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33683475

ABSTRACT

Virus maturation is found in all animal viruses and dsDNA bacteriophages that have been studied. It is a programmed process, cued by cellular environmental factors, that transitions a noninfectious, initial assembly product (provirus) to an infectious particle (virion). Nudaurelia capensis omega virus (NωV) is an ssRNA insect virus with T=4 quasi-symmetry. Over the last 20 years, NωV virus-like particles (VLPs) have been an attractive model for the detailed study of maturation. The novel feature of the system is the progressive transition from procapsid to capsid controlled by pH. Homogeneous populations of maturation intermediates can be readily produced at arbitrary intervals by adjusting the pH between 7.6 and 5.0. These intermediates were investigated using biochemical and biophysical methods to create a stop-frame transition series of this complex process. The studies reviewed here characterized the large-scale subunit reorganization during maturation (the particle changes size from 48 nm to 41 nm) as well as the mechanism of a maturation cleavage, a time-resolved study of cleavage site formation, and specific roles of quasi-equivalent subunits in the release of membrane lytic peptides required for cellular entry.


Subject(s)
RNA Viruses/physiology , Viral Proteins/metabolism , Virus Assembly/physiology , Animals , RNA Viruses/genetics , Viral Proteins/genetics
5.
Appl Environ Microbiol ; 86(19)2020 09 17.
Article in English | MEDLINE | ID: mdl-32709725

ABSTRACT

Rhizobium tropici CIAT 899 is a broad-host-range rhizobial strain that establishes symbiotic interactions with legumes and tolerates different environmental stresses such as heat, acidity, or salinity. This rhizobial strain produces a wide variety of symbiotically active nodulation factors (NF) induced not only by the presence of plant-released flavonoids but also under osmotic stress conditions through the LysR-type transcriptional regulators NodD1 (flavonoids) and NodD2 (osmotic stress). However, the activation of NodD2 under high-osmotic-stress conditions remains elusive. Here, we have studied the role of a new AraC-type regulator (named as OnfD) in the symbiotic interaction of R. tropici CIAT 899 with Phaseolus vulgaris and Lotus plants. We determined that OnfD is required under salt stress conditions for the transcriptional activation of the nodulation genes and therefore the synthesis and export of NF, which are required for a successful symbiosis with P. vulgaris Moreover, using bacterial two-hybrid analysis, we demonstrated that the OnfD and NodD2 proteins form homodimers and OnfD/NodD2 form heterodimers, which could be involved in the production of NF in the presence of osmotic stress conditions since both regulators are required for NF synthesis in the presence of salt. A structural model of OnfD is presented and discussed.IMPORTANCE The synthesis and export of rhizobial NF are mediated by a conserved group of LysR-type regulators, the NodD proteins. Here, we have demonstrated that a non-LysR-type regulator, an AraC-type protein, is required for the transcriptional activation of symbiotic genes and for the synthesis of symbiotically active NF under salt stress conditions.


Subject(s)
AraC Transcription Factor/genetics , Bacterial Proteins/genetics , Lotus/microbiology , Phaseolus/microbiology , Rhizobium tropici/genetics , Symbiosis/genetics , AraC Transcription Factor/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Rhizobium tropici/metabolism , Salt Stress/genetics , Transcriptional Activation/genetics
8.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 107-115, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38767964

ABSTRACT

Imaging scaffolds composed of designed protein cages fused to designed ankyrin repeat proteins (DARPins) have enabled the structure determination of small proteins by cryogenic electron microscopy (cryo-EM). One particularly well characterized scaffold type is a symmetric tetrahedral assembly composed of 24 subunits, 12 A and 12 B, which has three cargo-binding DARPins positioned on each vertex. Here, the X-ray crystal structure of a representative tetrahedral scaffold in the apo state is reported at 3.8 Šresolution. The X-ray crystal structure complements recent cryo-EM findings on a closely related scaffold, while also suggesting potential utility for crystallographic investigations. As observed in this crystal structure, one of the three DARPins, which serve as modular adaptors for binding diverse `cargo' proteins, present on each of the vertices is oriented towards a large solvent channel. The crystal lattice is unusually porous, suggesting that it may be possible to soak crystals of the scaffold with small (≤30 kDa) protein cargo ligands and subsequently determine cage-cargo structures via X-ray crystallography. The results suggest the possibility that cryo-EM scaffolds may be repurposed for structure determination by X-ray crystallography, thus extending the utility of electron-microscopy scaffold designs for alternative structural biology applications.


Subject(s)
Ankyrin Repeat , Models, Molecular , Crystallography, X-Ray/methods , Cryoelectron Microscopy/methods , Ligands , Protein Conformation , Protein Binding , Gene Expression
9.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464160

ABSTRACT

Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages - endowed with fluorescence and targeted binding properties - into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).

10.
Structure ; 32(6): 751-765.e11, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38513658

ABSTRACT

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, self-assembling protein cages. For the generation of docked conformations, we emphasize a protein fragment-based approach, while for sequence design of the de novo interface, a comparison of knowledge-based and machine learning protocols highlights the power and increased experimental success achieved using ProteinMPNN. An analysis of design outcomes provides insights for improving interface design protocols, including prioritizing fragment-based motifs, balancing interface hydrophobicity and polarity, and identifying preferred polar contact patterns. In all, we report five structures for seven protein cages, along with two structures of intermediate assemblies, with the highest resolution reaching 2.0 Å using cryo-EM. This set of designed cages adds substantially to the body of available protein nanoparticles, and to methodologies for their creation.


Subject(s)
Machine Learning , Proteins , Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Molecular Docking Simulation , Cryoelectron Microscopy/methods , Models, Molecular
11.
Protein Sci ; 33(4): e4973, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533546

ABSTRACT

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.


Subject(s)
Designed Ankyrin Repeat Proteins , Proteins , Proteins/chemistry
12.
Biomolecules ; 13(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37509158

ABSTRACT

Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein-protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Kidney Failure, Chronic/drug therapy , Kidney Failure, Chronic/therapy , Quality of Life , Renal Dialysis , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/therapy , beta 2-Microglobulin/metabolism , beta 2-Microglobulin/pharmacology , Nanoparticles/therapeutic use
13.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873110

ABSTRACT

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, while methods for their creation remain challenging and unpredictable. In the present study, we apply new computational approaches to design a suite of new tetrahedrally symmetric, self-assembling protein cages. For the generation of docked poses, we emphasize a protein fragment-based approach, while for de novo interface design, a comparison of computational protocols highlights the power and increased experimental success achieved using the machine learning program ProteinMPNN. In relating information from docking and design, we observe that agreement between fragment-based sequence preferences and ProteinMPNN sequence inference correlates with experimental success. Additional insights for designing polar interactions are highlighted by experimentally testing larger and more polar interfaces. In all, using X-ray crystallography and cryo-EM, we report five structures for seven protein cages, with atomic resolution in the best case reaching 2.0 Å. We also report structures of two incompletely assembled protein cages, providing unique insights into one type of assembly failure. The new set of designed cages and their structures add substantially to the body of available protein nanoparticles, and to methodologies for their creation.

14.
bioRxiv ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37986890

ABSTRACT

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.

15.
Commun Biol ; 4(1): 619, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031522

ABSTRACT

Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.


Subject(s)
Capsid Proteins/metabolism , Eukaryota/physiology , Nicotiana/virology , Plant Leaves/virology , RNA Viruses/physiology , Virion/physiology , Virus Assembly , Capsid Proteins/genetics , Cryoelectron Microscopy , Hydrogen-Ion Concentration , Models, Molecular , Protein Structure, Quaternary
16.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064959

ABSTRACT

The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.


Subject(s)
Genetic Vectors/genetics , Plant Viruses/genetics , Transduction, Genetic , Virus Replication , Capsid/ultrastructure , Genetic Vectors/administration & dosage , Plant Viruses/isolation & purification , Plant Viruses/ultrastructure , Plants/virology , Nicotiana/virology
17.
Eur J Pharm Biopharm ; 155: 103-111, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32805362

ABSTRACT

The harsh conditions of the gastro-intestinal (GI) milieu pose a major barrier to the oral delivery of protein nanocages. Here we studied the stability of Nudaurelia capensis omega virus (NωV) virus-like particles (VLPs) in simulated GI fluids. NωV VLPs capsids and procapsids were transiently expressed in plants, the VLPs were incubated in various simulated GI fluids and their stability was determined by gel electrophoresis, density gradient ultracentrifugation and transmission electron microscopy (TEM). The results showed that the capsids were highly resistant to simulated gastric fluids at pH ≥ 3. Even under the harshest conditions, which consisted of a pepsin solution at pH 1.2, NωV capsids remained assembled as VLPs, though some digestion of the coat protein occurred. Moreover, 80.8% (±10.2%) stability was measured for NωV capsids upon 4 h incubation in simulated intestinal fluids. The high resistance of this protein cage to digestion and denaturation can be attributed to its distinctively compact structure. The more porous form of the VLPs, the procapsid, was less stable under all conditions. Our results suggest that NωV VLPs capsids are likely to endure transit through the GI tract, designating them as promising candidate protein nanocages for oral drug delivery.


Subject(s)
Capsid/metabolism , Insect Viruses , Nanoparticles , Plants/metabolism , RNA Viruses , Animals , Body Fluids , Capsid Proteins/biosynthesis , Centrifugation, Density Gradient , Drug Delivery Systems , Gastrointestinal Tract/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Pepsin A/chemistry
18.
Natl Sci Rev ; 11(3): nwae071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38572076
19.
Methods Mol Biol ; 1776: 3-17, 2018.
Article in English | MEDLINE | ID: mdl-29869231

ABSTRACT

When the coat protein reading frame of turnip crinkle virus (TCV) is transiently expressed in leaves, virus-like particles (VLPs) are readily formed. However, after introducing genetic modifications to the full-length coat protein sequence, such as the introduction of an epitope-specific sequence within the coat protein sequence or the in-frame carboxyl terminal fusion of GFP, the formation of such modified VLPs is poor. However, by coexpression of one of these modified forms with wild-type TCV coat protein by the coinfiltration of appropriate Agrobacterium suspensions, VLP generation is enhanced through the formation of "mosaics," that is, individual VLPs consisting of both modified and wild-type subunits (also known as phenotypically mixed VLPs). Here we describe methods for the introduction of genetic modifications into the TCV coat protein sequence, the production of mosaic TCV VLPs and their characterization.


Subject(s)
Arabidopsis/virology , Capsid Proteins/genetics , Carmovirus/genetics , Mosaic Viruses/genetics , Viral Proteins/genetics , Capsid , Plant Leaves/virology
20.
Article in English | MEDLINE | ID: mdl-28078770

ABSTRACT

Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.


Subject(s)
Nanomedicine , Nanotechnology , Plant Viruses , Synthetic Biology , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL