Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(1-2): 98-112.e14, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633912

ABSTRACT

The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.


Subject(s)
Breast Neoplasms/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/pathology , Animals , Breast Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , DNA Methylation/physiology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred NOD , Nanog Homeobox Protein/metabolism , Neoplasm Metastasis/physiopathology , Neoplastic Cells, Circulating/metabolism , Octamer Transcription Factor-3/metabolism , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
2.
Cell ; 155(2): 410-22, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120139

ABSTRACT

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Response Elements , Stem Cell Factor/genetics , Testicular Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cell Proliferation , Genetic Predisposition to Disease , Humans , Male , Mice , Selection, Genetic , Transcription, Genetic
3.
Nature ; 607(7917): 156-162, 2022 07.
Article in English | MEDLINE | ID: mdl-35732738

ABSTRACT

The metastatic spread of cancer is achieved by the haematogenous dissemination of circulating tumour cells (CTCs). Generally, however, the temporal dynamics that dictate the generation of metastasis-competent CTCs are largely uncharacterized, and it is often assumed that CTCs are constantly shed from growing tumours or are shed as a consequence of mechanical insults1. Here we observe a striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep. Further, we demonstrate that rest-phase CTCs are highly prone to metastasize, whereas CTCs generated during the active phase are devoid of metastatic ability. Mechanistically, single-cell RNA sequencing analysis of CTCs reveals a marked upregulation of mitotic genes exclusively during the rest phase in both patients and mouse models, enabling metastasis proficiency. Systemically, we find that key circadian rhythm hormones such as melatonin, testosterone and glucocorticoids dictate CTC generation dynamics, and as a consequence, that insulin directly promotes tumour cell proliferation in vivo, yet in a time-dependent manner. Thus, the spontaneous generation of CTCs with a high proclivity to metastasize does not occur continuously, but it is concentrated within the rest phase of the affected individual, providing a new rationale for time-controlled interrogation and treatment of metastasis-prone cancers.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Sleep , Animals , Breast Neoplasms/pathology , Cell Count , Cell Proliferation , Disease Models, Animal , Female , Glucocorticoids , Humans , Insulin , Melatonin , Mice , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology , RNA-Seq , Single-Cell Analysis , Testosterone , Time Factors
4.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
5.
Nature ; 566(7745): 553-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30728496

ABSTRACT

A better understanding of the features that define the interaction between cancer cells and immune cells is important for the development of new cancer therapies1. However, focus is often given to interactions that occur within the primary tumour and its microenvironment, whereas the role of immune cells during cancer dissemination in patients remains largely uncharacterized2,3. Circulating tumour cells (CTCs) are precursors of metastasis in several types of cancer4-6, and are occasionally found within the bloodstream in association with non-malignant cells such as white blood cells (WBCs)7,8. The identity and function of these CTC-associated WBCs, as well as the molecular features that define the interaction between WBCs and CTCs, are unknown. Here we isolate and characterize individual CTC-associated WBCs, as well as corresponding cancer cells within each CTC-WBC cluster, from patients with breast cancer and from mouse models. We use single-cell RNA sequencing to show that in the majority of these cases, CTCs were associated with neutrophils. When comparing the transcriptome profiles of CTCs associated with neutrophils against those of CTCs alone, we detect a number of differentially expressed genes that outline cell cycle progression, leading to more efficient metastasis formation. Further, we identify cell-cell junction and cytokine-receptor pairs that define CTC-neutrophil clusters, representing key vulnerabilities of the metastatic process. Thus, the association between neutrophils and CTCs drives cell cycle progression within the bloodstream and expands the metastatic potential of CTCs, providing a rationale for targeting this interaction in treatment of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Cell Cycle , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology , Neutrophils/pathology , Animals , Breast Neoplasms/therapy , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Exons/genetics , Female , Gene Expression Profiling , Humans , Intercellular Junctions , Mice , Mutation/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/metabolism , Neutrophils/metabolism , Sequence Analysis, RNA , Exome Sequencing
6.
Br J Cancer ; 125(1): 23-27, 2021 07.
Article in English | MEDLINE | ID: mdl-33762721

ABSTRACT

Circulating tumour cell (CTC) clusters have been proposed to be major players in the metastatic spread of breast cancer, particularly during advanced disease stages. Yet, it is unclear whether or not they manifest in early breast cancer, as their occurrence in patients with metastasis-free primary disease has not been thoroughly evaluated. In this study, exploiting nanostructured titanium oxide-coated slides for shear-free CTC identification, we detect clustered CTCs in the curative setting of multiple patients with early breast cancer prior to surgical treatment, highlighting their presence already at early disease stages. These results spotlight an important aspect of metastasis biology and the possibility to intervene with anti-cluster therapeutics already during the early manifestation of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Titanium/chemistry , Breast Neoplasms/surgery , Case-Control Studies , Cell Line, Tumor , Female , Humans , Nanostructures , Neoplasm Metastasis , Neoplasm Staging
7.
J Allergy Clin Immunol ; 145(2): 619-631.e2, 2020 02.
Article in English | MEDLINE | ID: mdl-31783056

ABSTRACT

BACKGROUND: p-Phenylenediamine (PPD) is a strong contact allergen used in hair dye that is known to cause allergic contact dermatitis (ACD). Both private and occupational exposure to PPD is frequent, but the effect of PPD exposure in nonallergic occupationally exposed subjects is unknown. OBJECTIVE: We sought to investigate the effects of PPD exposure on the skin of occupationally exposed subjects with and without clinical symptoms. METHODS: Skin biopsy specimens were collected from 4 patients with mild and 5 patients with severe PPD-related ACD and 7 hairdressers without contact dermatitis on day 4 after patch testing with 1% PPD in petrolatum. RNA sequencing and transcriptomics analyses were performed and confirmed by using quantitative RT-PCR. Protein expression was analyzed in skin from 4 hairdressers and 1 patient with ACD by using immunofluorescence staining. Reconstructed human epidermis was used to test the effects of PPD in vitro. RESULTS: RNA sequencing demonstrated downregulation of tight junction and stratum corneum proteins in the skin of patients with severe ACD after PPD exposure. Claudin-1 (CLDN-1), CLDN8, CLDN11, CXADR-like membrane protein (CLMP), occludin (OCLN), membrane-associated guanylate kinase inverted 1 (MAGI1), and MAGI2 mRNA expression was downregulated in patients with severe ACD. CLDN1 and CLMP expression were downregulated in nonresponding hairdressers and patients with mild ACD. Filaggrin 1 (FLG1), FLG2, and loricrin (LOR) expression were downregulated in patients with ACD. Confocal microscopic images showed downregulation of CLDN-1, FLG-1, and FLG-2 expression. In contrast, 3-dimensional skin cultures showed upregulation of FLG-1 in response to PPD but downregulation of FLG-2. CONCLUSION: PPD-exposed skin is associated with extensive transcriptomic changes, including downregulation of tight junction and stratum corneum proteins, even in the absence of clinical symptoms.


Subject(s)
Hair Dyes/adverse effects , Occupational Exposure/adverse effects , Phenylenediamines/adverse effects , Skin/drug effects , Adult , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/pathology , Female , Filaggrin Proteins , Humans , Skin/pathology , Tight Junction Proteins/drug effects
8.
Recent Results Cancer Res ; 215: 347-368, 2020.
Article in English | MEDLINE | ID: mdl-31605238

ABSTRACT

Next-generation sequencing of DNA and RNA obtained from liquid biopsies of cancer patients may reveal important insights into disease progression and metastasis formation, and it holds the promise to enable new methods for noninvasive screening and clinical decision support. However, implementing liquid biopsy sequencing protocols is challenged by capturing circulating tumor cells or cell-free tumor DNA from blood samples, by amplifying genomic DNA and RNA in a reliable and unbiased manner, and by extracting biologically meaningful signals from the noisy sequencing data. In this chapter, we discuss computational methods for the analysis of DNA and RNA sequencing data obtained from liquid biopsies, addressing these challenges.


Subject(s)
Circulating Tumor DNA/analysis , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Circulating Tumor DNA/blood , Humans
9.
J Allergy Clin Immunol ; 143(6): 2190-2201.e9, 2019 06.
Article in English | MEDLINE | ID: mdl-30682454

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized. OBJECTIVE: We sought to determine the factors that induce regulatory innate lymphoid cells (ILCregs). METHODS: IL-10+ ILCregs induced from ILC2s by using retinoic acid (RA) were analyzed with RNA-sequencing and flow cytometry. ILCregs were evaluated in human nasal tissue from healthy subjects and patients with chronic rhinosinusitis with nasal polyps and lung tissue from house dust mite- or saline-treated mice. RESULTS: RA induced IL-10 secretion by human ILC2s but not type 2 cytokines. IL-10+ ILCregs, which were converted from ILC2s by means of RA stimulation, expressed a regulatory T cell-like signature with expression of IL-10, cytotoxic T lymphocyte-associated protein 4, and CD25, with downregulated effector type 2-related markers, such as chemoattractant receptor-homologous molecule on TH2 cells and ST2, and suppressed activation of CD4+ T cells and ILC2s. ILCregs were rarely detected in human nasal tissue from healthy subjects or lung tissue from saline-treated mice, but numbers were increased in nasal tissue from patients with chronic rhinosinusitis with nasal polyps and in lung tissue from house dust mite-treated mice. Enzymes for RA synthesis were upregulated in airway epithelial cells during type 2 inflammation in vivo and by IL-13 in vitro. CONCLUSION: We have identified a unique immune regulatory and anti-inflammatory pathway by which RA converts ILC2s to ILCregs. Interactions between airway epithelial cells and ILC2s play an important roles in the generation of ILCregs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lymphocytes/drug effects , Tretinoin/pharmacology , Animals , Cell Line , Cytokines/immunology , Epithelial Cells/immunology , Humans , Immunity, Innate , Lung/immunology , Lymphocytes/immunology , Mice, Inbred C57BL , Paranasal Sinuses/immunology
10.
J Allergy Clin Immunol ; 141(1): 300-310.e11, 2018 01.
Article in English | MEDLINE | ID: mdl-28392332

ABSTRACT

BACKGROUND: Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. OBJECTIVE: We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. METHODS: Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2)-/-, Rag2-/-Il2rg-/-, and Rorasg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. RESULTS: ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2-/- mice lacking T and B cells triggered TJ disruption, whereas Rag2-/-Il2rg-/- and Rorasg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. CONCLUSION: These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13.


Subject(s)
Asthma/immunology , Asthma/metabolism , Immunity, Innate , Interleukin-13/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Tight Junctions/metabolism , Animals , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Interleukin-13/antagonists & inhibitors , Mice , Mice, Transgenic , Mucus/metabolism , Respiratory Mucosa/pathology
11.
Breast Cancer Res ; 20(1): 141, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458879

ABSTRACT

BACKGROUND: The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive. METHODS: We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation. CTCs were quantified with the Parsortix microfluidic device. Clinicopathological variables, blood counts at the time of CTC isolation and detailed treatment history prior to blood sampling were evaluated for each patient. RESULTS: Among 73 patients, we detected at least one CTC per 7.5 ml of blood in 34 (46%). Of these, 22 (65%) had single CTCs only, whereas 12 (35%) featured both single CTCs and CTC clusters. Treatment with the monoclonal antibody denosumab correlated with the absence of CTCs, both when considering all patients and when considering only those with bone metastasis. We also found that low red blood cell count was associated with the presence of CTCs, whereas high CA 15-3 tumor marker, high mean corpuscular volume, high white blood cell count and high mean platelet volume associated specifically with CTC clusters. CONCLUSIONS: In addition to blood count correlatives to single and clustered CTCs, we found that denosumab treatment associates with most patients lacking CTCs from their peripheral circulation. Prospective studies will be needed to validate the involvement of denosumab in the prevention of CTC generation.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Denosumab/pharmacology , Erythrocytes , Neoplastic Cells, Circulating/drug effects , Aged , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Count/methods , Denosumab/therapeutic use , Disease Progression , Female , Humans , Microfluidic Analytical Techniques/methods , Middle Aged , Neoplasm Invasiveness/pathology , Prognosis , Retrospective Studies
12.
Br J Cancer ; 119(4): 487-491, 2018 08.
Article in English | MEDLINE | ID: mdl-30065256

ABSTRACT

Human glioblastoma (GBM) is a highly aggressive, invasive and hypervascularised malignant brain cancer. Individual circulating tumour cells (CTCs) are sporadically found in GBM patients, yet it is unclear whether multicellular CTC clusters are generated in this disease and whether they can bypass the physical hurdle of the blood-brain barrier.  Here, we assessed CTC presence and composition at multiple time points in 13 patients with progressing GBM during an open-label phase 1/2a study with the microtubule inhibitor BAL101553. We observe CTC clusters ranging from 2 to 23 cells and present at multiple sampling time points in a GBM patient with pleomorphism and extensive necrosis, throughout disease progression. Exome sequencing of GBM CTC clusters highlights variants in 58 cancer-associated genes including ATM, PMS2, POLE, APC, XPO1, TFRC, JAK2, ERBB4 and ALK. Together, our findings represent the first evidence of the presence of CTC clusters in GBM.


Subject(s)
Benzimidazoles/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Cells, Circulating/pathology , Oxadiazoles/administration & dosage , Animals , Benzimidazoles/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Count , Cluster Analysis , Disease Progression , Female , Gene Regulatory Networks/drug effects , Genetic Variation , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Mice , Mutation , Neoplastic Cells, Circulating/chemistry , Neoplastic Cells, Circulating/drug effects , Oxadiazoles/pharmacology , Exome Sequencing , Xenograft Model Antitumor Assays
13.
Gastroenterology ; 148(2): 367-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447851

ABSTRACT

BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.


Subject(s)
Barrett Esophagus/genetics , Bone Morphogenetic Proteins/genetics , Genetic Predisposition to Disease , Growth Differentiation Factors/genetics , Polymorphism, Single Nucleotide , T-Box Domain Proteins/genetics , Barrett Esophagus/etiology , Esophageal Neoplasms/genetics , Genome-Wide Association Study , Humans , Risk
14.
Am J Hum Genet ; 91(1): 5-14, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22703880

ABSTRACT

Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homozygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype restricted to the CNS and starting with lower-motor-neuron disease.


Subject(s)
Acid Ceramidase/genetics , Mutation , Spinal Muscular Atrophies of Childhood/genetics , Adolescent , Animals , Child , Child, Preschool , Female , Gene Knockdown Techniques , Humans , Male , Myoclonic Epilepsies, Progressive/genetics , Pedigree , Zebrafish
15.
Thorax ; 69(6): 558-64, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24613990

ABSTRACT

BACKGROUND: Increased bronchial responsiveness is characteristic of asthma. Gas cooking, which is a major indoor source of the highly oxidant nitrogen dioxide, has been associated with respiratory symptoms and reduced lung function. However, little is known about the effect of gas cooking on bronchial responsiveness and on how this relationship may be modified by variants in the genes GSTM1, GSTT1 and GSTP1, which influence antioxidant defences. METHODS: The study was performed in subjects with forced expiratory volume in one second at least 70% of predicted who took part in the multicentre European Community Respiratory Health Survey, had bronchial responsiveness assessed by methacholine challenge and had been genotyped for GSTM1, GSTT1 and GSTP1-rs1695. Information on the use of gas for cooking was obtained from interviewer-led questionnaires. Effect modification by genotype on the association between the use of gas for cooking and bronchial responsiveness was assessed within each participating country, and estimates combined using meta-analysis. RESULTS: Overall, gas cooking, as compared with cooking with electricity, was not associated with bronchial responsiveness (ß=-0.08, 95% CI -0.40 to 0.25, p=0.648). However, GSTM1 significantly modified this effect (ß for interaction=-0.75, 95% CI -1.16 to -0.33, p=4×10(-4)), with GSTM1 null subjects showing more responsiveness if they cooked with gas. No effect modification by GSTT1 or GSTP1-rs1695 genotypes was observed. CONCLUSIONS: Increased bronchial responsiveness was associated with gas cooking among subjects with the GSTM1 null genotype. This may reflect the oxidant effects on the bronchi of exposure to nitrogen dioxide.


Subject(s)
Cooking/methods , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Natural Gas , Adult , Bronchial Provocation Tests , Electricity , European Union , Female , Forced Expiratory Volume/physiology , Genotype , Health Surveys , Humans , Male , Nitrogen Dioxide/toxicity
17.
Sci Adv ; 8(28): eabk3511, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35857489

ABSTRACT

Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.

18.
Front Immunol ; 13: 849701, 2022.
Article in English | MEDLINE | ID: mdl-35911772

ABSTRACT

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Subject(s)
Lung Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Cell Line, Tumor , Intercellular Adhesion Molecule-1/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Ovalbumin , Tumor Microenvironment
19.
Cancer Res ; 82(4): 681-694, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34916221

ABSTRACT

Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process. Validation experiments revealed sensitivities to inhibitors that are already available, such as PLK1 inhibitors, to prevent CTC intravasation. Together, these findings present a new tool to reclassify driver genes involved in the spread of human cancer, providing insights into the biology of metastasis and paving the way to test targeted treatment approaches. SIGNIFICANCE: A loss-of-function CRISPR screen in human CTC-derived xenografts identifies genes critical for individual steps of the metastatic cascade, suggesting novel drivers and treatment opportunities for metastatic breast cancers.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neoplastic Cells, Circulating/metabolism , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA-Seq/methods , Survival Analysis , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
20.
Genome Med ; 12(1): 31, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32192534

ABSTRACT

The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.


Subject(s)
Neoplasms/blood , Neoplastic Cells, Circulating/metabolism , Animals , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Liquid Biopsy/methods , Neoplasm Metastasis , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology
SELECTION OF CITATIONS
SEARCH DETAIL