Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Genes Dev ; 33(17-18): 1252-1264, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31395740

ABSTRACT

Although MAX is regarded as an obligate dimerization partner for MYC, its function in normal development and neoplasia is poorly defined. We show that B-cell-specific deletion of Max has a modest effect on B-cell development but completely abrogates Eµ-Myc-driven lymphomagenesis. While Max loss affects only a few hundred genes in normal B cells, it leads to the global down-regulation of Myc-activated genes in premalignant Eµ-Myc cells. We show that the balance between MYC-MAX and MNT-MAX interactions in B cells shifts in premalignant B cells toward a MYC-driven transcriptional program. Moreover, we found that MAX loss leads to a significant reduction in MYC protein levels and down-regulation of direct transcriptional targets, including regulators of MYC stability. This phenomenon is also observed in multiple cell lines treated with MYC-MAX dimerization inhibitors. Our work uncovers a layer of Myc autoregulation critical for lymphomagenesis yet partly dispensable for normal development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Active Transport, Cell Nucleus , Animals , Carcinogenesis/drug effects , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/pharmacology , Kynurenine/genetics , Kynurenine/metabolism , Lymphoma/physiopathology , Mice , Organoids/growth & development , Organoids/physiopathology , Oximes/pharmacology , Sulfonamides/pharmacology
2.
Elife ; 102021 07 08.
Article in English | MEDLINE | ID: mdl-34236315

ABSTRACT

MGA, a transcription factor and member of the MYC network, is mutated or deleted in a broad spectrum of malignancies. As a critical test of a tumor suppressive role, we inactivated Mga in two mouse models of non-small cell lung cancer using a CRISPR-based approach. MGA loss significantly accelerated tumor growth in both models and led to de-repression of non-canonical Polycomb ncPRC1.6 targets, including genes involved in metastasis and meiosis. Moreover, MGA deletion in human lung adenocarcinoma lines augmented invasive capabilities. We further show that MGA-MAX, E2F6, and L3MBTL2 co-occupy thousands of promoters and that MGA stabilizes these ncPRC1.6 subunits. Lastly, we report that MGA loss also induces a pro-growth effect in human colon organoids. Our studies establish MGA as a bona fide tumor suppressor in vivo and suggest a tumor suppressive mechanism in adenocarcinomas resulting from widespread transcriptional attenuation of MYC and E2F target genes mediated by MGA-MAX associated with a non-canonical Polycomb complex.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Epigenetic Repression , Polycomb-Group Proteins/genetics , Adenocarcinoma of Lung/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Disease Progression , Female , Humans , Male , Mice , Neoplasm Invasiveness/genetics , Polycomb-Group Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL