Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Publication year range
1.
Syst Biol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907999

ABSTRACT

The nine-banded armadillo (Dasypus novemcinctus) is the most widespread xenarthran species across the Americas. Recent studies have suggested it is composed of four morphologically and genetically distinct lineages of uncertain taxonomic status. To address this issue, we used a museomic approach to sequence 80 complete mitogenomes and capture 997 nuclear loci for 71 Dasypus individuals sampled across the entire distribution. We carefully cleaned up potential genotyping errors and cross contaminations that could blur species boundaries by mimicking gene flow. Our results unambiguously support four distinct lineages within the D. novemcinctus complex. We found cases of mito-nuclear phylogenetic discordance but only limited contemporary gene flow confined to the margins of the lineage distributions. All available evidence including the restricted gene flow, phylogenetic reconstructions based on both mitogenomes and nuclear loci, and phylogenetic delimitation methods consistently supported the four lineages within D. novemcinctus as four distinct species. Comparable genetic differentiation values to other recognized Dasypus species further reinforced their status as valid species. Considering congruent morphological results from previous studies, we provide an integrative taxonomic view to recognise four species within the D. novemcinctus complex: D. novemcinctus, D. fenestratus, D. mexicanus, and D. guianensis sp. nov., a new species endemic of the Guiana Shield that we describe here. The two available individuals of D. mazzai and D. sabanicola were consistently nested within D. novemcinctus lineage and their status remains to be assessed. The present work offers a case study illustrating the power of museomics to reveal cryptic species diversity within a widely distributed and emblematic species of mammals.

2.
Emerg Infect Dis ; 26(5): 993-997, 2020 05.
Article in English | MEDLINE | ID: mdl-32310064

ABSTRACT

We investigated a Q fever outbreak that occurred in an isolated area of the Amazon Rain Forest in French Guiana in 2014. Capybara fecal samples were positive for Coxiella burnetii DNA. Being near brush cutters in use was associated with disease development. Capybaras are a putative reservoir for C. burnetii.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Coxiella burnetii/genetics , Disease Outbreaks , French Guiana/epidemiology , Q Fever/epidemiology , Rainforest , Rodentia
4.
Proc Natl Acad Sci U S A ; 112(5): E487-96, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605903

ABSTRACT

Syncytins are genes of retroviral origin captured by eutherian mammals, with a role in placentation. Here we show that some marsupials-which are the closest living relatives to eutherian mammals, although they diverged from the latter ∼190 Mya-also possess a syncytin gene. The gene identified in the South American marsupial opossum and dubbed syncytin-Opo1 has all of the characteristic features of a bona fide syncytin gene: It is fusogenic in an ex vivo cell-cell fusion assay; it is specifically expressed in the short-lived placenta at the level of the syncytial feto-maternal interface; and it is conserved in a functional state in a series of Monodelphis species. We further identify a nonfusogenic retroviral envelope gene that has been conserved for >80 My of evolution among all marsupials (including the opossum and the Australian tammar wallaby), with evidence for purifying selection and conservation of a canonical immunosuppressive domain, but with only limited expression in the placenta. This unusual captured gene, together with a third class of envelope genes from recently endogenized retroviruses-displaying strong expression in the uterine glands where retroviral particles can be detected-plausibly correspond to the different evolutionary statuses of a captured retroviral envelope gene, with only syncytin-Opo1 being the present-day bona fide syncytin active in the opossum and related species. This study would accordingly recapitulate the natural history of syncytin exaptation and evolution in a single species, and definitely extends the presence of such genes to all major placental mammalian clades.


Subject(s)
Gene Products, env/genetics , Marsupialia/genetics , Placenta/physiology , Pregnancy Proteins/genetics , Retroviridae/physiology , Viral Envelope Proteins/genetics , Animals , Female , Gene Expression Profiling , Genes, env , In Situ Hybridization , Marsupialia/classification , Molecular Sequence Data , Phylogeny , Pregnancy , Transcription, Genetic
5.
Mol Ecol ; 26(22): 6478-6486, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28926155

ABSTRACT

In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology.


Subject(s)
DNA/blood , Insect Vectors/genetics , Vertebrates/classification , Animals , Biodiversity , Culicidae/genetics , Feeding Behavior , French Guiana , Psychodidae/genetics
6.
Proc Natl Acad Sci U S A ; 111(41): E4332-41, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267646

ABSTRACT

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Syncytins have been identified in Euarchontoglires (primates, rodents, Leporidae) and Laurasiatheria (Carnivora, ruminants) placental mammals. Here, we searched for similar genes in species that retained characteristic features of primitive mammals, namely the Malagasy and mainland African Tenrecidae. They belong to the superorder Afrotheria, an early lineage that diverged from Euarchotonglires and Laurasiatheria 100 Mya, during the Cretaceous terrestrial revolution. An in silico search for env genes with full coding capacity within a Tenrecidae genome identified several candidates, with one displaying placenta-specific expression as revealed by RT-PCR analysis of a large panel of Setifer setosus tissues. Cloning of this endogenous retroviral env gene demonstrated fusogenicity in an ex vivo cell-cell fusion assay on a panel of mammalian cells. Refined analysis of placental architecture and ultrastructure combined with in situ hybridization demonstrated specific expression of the gene in multinucleate cellular masses and layers at the materno-fetal interface, consistent with a role in syncytium formation. This gene, which we named "syncytin-Ten1," is conserved among Tenrecidae, with evidence of purifying selection and conservation of fusogenic activity. To our knowledge, it is the first syncytin identified to date within the ancestrally diverged Afrotheria superorder.


Subject(s)
Eulipotyphla/genetics , Gene Products, env/genetics , Phylogeny , Placentation/genetics , Pregnancy Proteins/genetics , Retroviridae/genetics , Animals , Computer Simulation , Evolution, Molecular , Female , Genome/genetics , In Situ Hybridization , Molecular Sequence Data , Placenta/cytology , Placenta/ultrastructure , Pregnancy , Proviruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Selection, Genetic , Time Factors , Virus Integration/genetics
7.
Virologie (Montrouge) ; 21(3): 130-146, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-31967560

ABSTRACT

Among mammals, rodents play a key role in the emergence of viral diseases. In French Guiana, with 36 rodent species recorded in various ecosystems (pristine forests, savannas, anthropized environments), some natural habitats today encounter anthropogenic perturbations that induce changes in community structure and population dynamics. These modifications are sometimes associated with the circulation and emergence of viral pathogens. For 10 years, investigations on the circulation of two rodent-borne viruses, Hantavirus and Mammarenavirus, are underway in rodent populations as well as in humans for hantavirus. These investigations identified viruses from both genera in their potential reservoirs and allow describing the most favourable habitats for the reservoirs of hantavirus where the risk of viral emergence may be higher. We suggest to investigate how anthropic perturbations in rodent communities can drive the emergence of viruses that are currently confined to a small scale and search for evidence of infection in the human population.

8.
Virologie (Montrouge) ; 21(3): E12-E27, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-31967562

ABSTRACT

Among mammals, rodents play a key role in the emergence of viral diseases. In French Guiana, with 36 rodent species recorded in various ecosystems (pristine forests, savannas, anthropized environments), some natural habitats today encounter anthropogenic perturbations that induce changes in community structure and population dynamics. These modifications are sometimes associated with the circulation and emergence of viral pathogens. For 10 years, investigations on the circulation of two rodent-borne viruses, Hantavirus and Mammarenavirus, are underway in rodent populations as well as in humans for hantavirus. These investigations identified viruses from both genera in their potential reservoirs and allow describing the most favourable habitats for the reservoirs of hantavirus where the risk of viral emergence may be higher. We suggest to investigate how anthropic perturbations in rodent communities can drive the emergence of viruses that are currently confined to a small scale and search for evidence of infection in the human population.

9.
J Virol ; 88(14): 7915-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24789792

ABSTRACT

Syncytin genes are fusogenic envelope protein (env) genes of retroviral origin that have been captured for a function in placentation. Within rodents, two such genes have previously been identified in the mouse-related clade, allowing a demonstration of their essential role via knockout mice. Here, we searched for similar genes in a second major clade of the Rodentia order, the squirrel-related clade, taking advantage of the complete sequencing of the ground squirrel Ictidomys tridecemlineatus genome. In silico search for env genes with full coding capacity identified several candidate genes with one displaying placenta-specific expression, as revealed by quantitative reverse transcription-PCR analysis of a large panel of tissues. This gene belongs to a degenerate endogenous retroviral element, with recognizable hallmarks of an integrated provirus. Cloning of the gene in an expression vector for ex vivo cell-cell fusion and pseudotype assays demonstrated fusogenicity on a large panel of mammalian cells. In situ hybridization on placenta sections showed specific expression in domains where trophoblast cells fuse into a syncytiotrophoblast at the fetomaternal interface, consistent with a role in syncytium formation. Finally, we show that the gene is conserved among the tribe Marmotini, thus dating its capture back to about at least 25 million years ago, with evidence for purifying selection and conservation of fusogenic activity. This gene that we named syncytin-Mar1 is distinct from all seven Syncytin genes identified to date in eutherian mammals and is likely to be a major effector of placentation in its related clade. Importance: Syncytin genes are fusogenic envelope genes of retroviral origin, ancestrally captured for a function in placentation. Within rodents, two such genes had been previously identified in the mouse-related clade. Here, in the squirrel-related rodent clade, we identified the envelope gene of an endogenous retrovirus with all the features of a Syncytin: it is specifically expressed in the placenta of the woodchuck Marmota monax, at the level of cells fusing into a syncytium; it can trigger cell-cell and virus-cell fusion ex vivo; and it has been conserved for >25 million years of evolution, suggesting an essential role in its host physiology. Remarkably, syncytin-Mar1 is unrelated to all other Syncytin genes identified thus far in mammals (primates, muroids, carnivores, and ruminants). These results extend the range of retroviral envelope gene "domestication" in mammals and show that these events occurred independently, on multiple occasions during evolution to improve placental development in a process of convergent evolution.


Subject(s)
Endogenous Retroviruses/genetics , Gene Products, env/genetics , Placentation , Pregnancy Proteins/genetics , Sciuridae/physiology , Sciuridae/virology , Animals , Conserved Sequence , Female , Gene Expression Profiling , Gene Products, env/biosynthesis , In Situ Hybridization , Molecular Sequence Data , Pregnancy , Pregnancy Proteins/biosynthesis , Real-Time Polymerase Chain Reaction , Sciuridae/genetics , Sequence Analysis, DNA
10.
Biol Reprod ; 91(6): 148, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25339103

ABSTRACT

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Multiple independent events of syncytin gene capture were found to have occurred in primates, rodents, lagomorphs, carnivores, and ruminants. In the mouse, two syncytin-A and -B genes are present, which trigger the formation of the two-layered placental syncytiotrophoblast at the maternal-fetal interface, a structure classified as hemotrichorial. Here, we identified syncytin-A and -B orthologous genes in the genome of all Muroidea species analyzed, thus dating their capture back to about at least 40 million years ago, with evidence that they evolved under strong purifying selection. We further show, in the divergent Spalacidae lineage (blind mole rats [Spalax]), that both syncytins have conserved placenta-specific expression, as revealed by RT-PCR analysis of a panel of Spalax galili tissues, and display fusogenic activity, using ex vivo cell-cell fusion assays. Refined analysis of the placental architecture and ultrastructure revealed that the Spalax placenta displays a hemotrichorial organization of the interhemal membranes, as similarly observed for other Muroidea species, yet with only one trophoblastic cell layer being clearly syncytialized. In situ hybridization experiments further localized syncytin transcripts at the level of these differentiated interhemal membranes. These findings argue for a role of syncytin gene capture in the establishment of the original hemotrichorial placenta of Muroidea, and more generally in the diversity of placental structures among mammals.


Subject(s)
Endogenous Retroviruses/genetics , Gene Products, env/genetics , Placentation , Pregnancy Proteins/genetics , Spalax/genetics , Amino Acid Sequence , Animals , Arvicolinae , Conserved Sequence , Cricetinae , Female , Mice , Mole Rats , Molecular Sequence Data , Phylogeny , Placentation/genetics , Pregnancy , Rats , Sequence Homology, Amino Acid , Viral Envelope Proteins/genetics
11.
Folia Parasitol (Praha) ; 61(3): 242-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25065130

ABSTRACT

The trichostrongylid nematode Travassostrongylus scheibelorum sp. n. from the Linnaeus' mouse opossum, Marmosa murina (Linnaeus) (type host), and the woolly mouse opossum, Marmosa demerarae (Thomas), from French Guiana is described. The nematodes have a synlophe with ridges frontally oriented from right to left, six dorsal and six ventral, at midbody; seven dorsal and seven ventral posterior to the vulva, and two cuticular thickenings within the lateral spaces; a long dorsal ray and a pointed cuticular flap covering the vulva. This is the 12th species of Travassostrongylus Orloff, 1933, which includes species featuring ridges around the synlophe and a didelphic condition. These traits contrast with those in other genera in the Viannaiidae Neveu-Lemaire, 1934, which feature ventral ridges on the synlophe of adults and a monodelphic condition. Members of the family are chiefly Neotropical and are diagnosed based on the presence of a bursa of the type 2-2-1, 2-1-2 or irregular, and cuticle without ridges on the dorsal side (at least during one stage of their development). Herein, we present a reconstruction of the ancestral states of the didelphic/monodelphic condition and the cuticular ridges that form the synlophe in opossum-dwelling trichostrongyles, namely Travassostrongylus and Viannaia Travassos, 1914. Our investigations suggest they are not reciprocal sister taxa and that the change from didelphy to monodelphy and the loss of dorsal ridges, occurred in the common ancestor of species of Viannaia. These results suggest a synlophe with three ventral ridges is not plesiomorphic in the opossum dwelling trichostrongylids.


Subject(s)
Nematoda/anatomy & histology , Nematoda/classification , Nematode Infections/veterinary , Opossums , Animals , Female , French Guiana/epidemiology , Male , Nematoda/genetics , Nematode Infections/epidemiology , Nematode Infections/parasitology , Phylogeny , Species Specificity
12.
J Infect Dis ; 208(10): 1705-16, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23904289

ABSTRACT

In industrialized countries Candida albicans is considered the predominant commensal yeast of the human intestine, with approximately 40% prevalence in healthy adults. We discovered a highly original colonization pattern that challenges this current perception by studying in a 4- year interval a cohort of 151 Amerindians living in a remote community (French Guiana), and animals from their environment. The prevalence of C. albicans was persistently low (3% and 7% of yeast carriers). By contrast, Candida krusei and Saccharomyces cerevisiae were detected in over 30% of carriers. We showed that C. krusei and S. cerevisiae carriage was of food or environmental origin, whereas C. albicans carriage was associated with specific risk factors (being female and living in a crowded household). We also showed using whole-genome sequence comparison that C. albicans strains can persist in the intestinal tract of a healthy individual over a 4-year period.


Subject(s)
Candida albicans/physiology , Intestines/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Candida albicans/classification , Candidiasis/epidemiology , Candidiasis/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Evolution, Molecular , Female , French Guiana , Genome, Fungal , Humans , Male , Middle Aged , Multilocus Sequence Typing , Mycoses/epidemiology , Mycoses/microbiology , Phylogeny , Prevalence , Yeasts/classification , Yeasts/physiology , Young Adult
13.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734682

ABSTRACT

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Subject(s)
Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
14.
Antimicrob Agents Chemother ; 57(10): 5060-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23917313

ABSTRACT

Carriage of extended-spectrum beta-lactamase-producing enterobacteria (ESBL-E) has increased in community settings. Little is known about their long-term evolution. French Guiana Amerindians living in a very remote village, already sampled in 2001 and 2006 for ESBL-E fecal carriage, were screened again in October 2010. Sociodemographic data and antibiotic intake data were collected during the previous year. ESBL-E strains collected in 2010 and their plasmid contents were typed. The results were compared to those of the previous campaigns. The prevalence of ESBL-E carriage in 2010 was 5.3%, whereas it was 8.0% and 3.2% in 2006 and 2001, respectively. As previously determined, no individual factor was associated with carriage, including personal antibiotic exposure. However, overall antibiotic use had decreased to a 0.67 treatments/subject/year in 2010 versus 1.09 in 2006 (P < 0.001), which supports the idea that population exposure to antibiotics impacts on ESBL-E community carriage rates. A wide diversity of ESBL Escherichia coli strains belonging to the A0, A1, B1, and D2 phylogroups and producing the CTX-M-1, CTX-M-2, and CTX-M-8 enzymes were isolated. Despite the overall genetic diversity of the strains evaluated by repetitive extragenic palindromic PCR (rep-PCR) and multilocus sequence typing, two CTX-M-1-producing clones were found to have spread. In contrast, similar ESBL-bearing I1/Iγ plasmids were present in various strains both within and between carriers, suggesting high rates of plasmid transfer. Our results suggest that overall antibiotic exposure affects ESBL-E fecal carriage in the community. ESBL-E spread may be the result of both strain dissemination and the transfer of plasmids in intestinal microbiota.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Feces/microbiology , Adolescent , Adult , Escherichia coli/classification , Escherichia coli Proteins/metabolism , Female , Humans , Male , Phylogeny , Risk Factors , Young Adult , beta-Lactamases/metabolism
15.
Mol Phylogenet Evol ; 69(3): 728-39, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23850499

ABSTRACT

Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of phyllostomid bats based on a denser species sampling.


Subject(s)
Chiroptera/classification , Genome, Mitochondrial , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Chiroptera/genetics , Evolution, Molecular , Genetic Markers , Likelihood Functions , Sequence Analysis, DNA/methods
16.
Am J Primatol ; 72(3): 242-53, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19937739

ABSTRACT

Squirrel monkeys (genus Saimiri) are distributed over a wide area encompassing the Amazon Basin: French Guiana, Suriname, and Guyana, together with Western Panama and Western Costa Rica. The genus Saimiri includes a complex of species and subspecies displaying considerable morphological variation. Taxonomic and systematic studies have identified, in this genus, one to seven species comprising up to 16 subspecies. The phylogenetic relationships between these taxa are poorly understood. Molecular markers have yielded a consistent framework for the systematics of Central and South American Saimiri, identifying four distinct clades: S. oerstedii, S. sciureus, S. boliviensis, and S. ustus. Here, we reconsider the phylogenetic and biogeographic history of Saimiri on the basis of mitochondrial (mtDNA) sequence data, focusing mostly on individuals originating from the Amazon Basin. We studied 32 monkeys with well-defined geographic origins and inferred the phylogenetic relationships between them on the basis of full-length cytochrome b gene nucleotide sequences. The high level of gene diversity observed (0.966) is consistent with the high level of behavioral and morphological variation observed across the geographic range of the genus: 20 mtDNA haplotypes were identified with a maximum divergence of 4.81% between S. b. boliviensis and S. ustus. In addition to confirming the existence of the four clades previously identified on the basis of molecular characters, we suggest several new lineages, including S. s. macrodon, S. s. albigena, S. s. cassiquiarensis, and S. s. collinsi. We also propose new patterns of dispersion and diversification for the genus Saimiri, and discuss the contribution of certain rivers and forest refuges to its structuring.


Subject(s)
Cytochromes b/genetics , Phylogeny , Saimiri/genetics , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Geography , South America
17.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(5): 702-712, 2019 07.
Article in English | MEDLINE | ID: mdl-31208245

ABSTRACT

DNA barcoding has become a standard method for species identification in taxonomically complex groups. An important step of the barcoding process is the construction of a library of voucher-based material that was properly identified by independent methods, free of inaccurate identification, and paralogs. We provide here a cytochrome oxidase I (mt-Co1) DNA barcode database for species of the genus Oligoryzomys, based on type material and karyotyped specimens, and anchored on the mitochondrial genome of one species of Oligoryzomys, O. stramineus. To evaluate the taxonomic determination of new COI sequences, we assessed species intra/interspecific genetic distances (barcode gap), performed the General Mixed Yule Coalescent method (GMYC) for lineages' delimitation, and identified diagnostic nucleotides for each species of Oligoryzomys. Phylogenetic analyses of Oligoryzomys were performed on 2 datasets including 14 of the 23 recognized species of this genus: a mt-Co1 only matrix, and a concatenated matrix including mt-Co1, cytochrome b (mt-Cytb), and intron 7 of the nuclear fibrinogen beta chain gene (i7Fgb). We recovered nuclear-mitochondrial translocated (Numts) pseudogenes on our samples and identified several published sequences that are cases of Numts. We analyzed the rate of non-synonymous and synonymous substitution, which were higher in Numts in comparison to mtDNA sequences. GMYC delimitations and DNA barcode gap results highlight the need for further work that integrate molecular, karyotypic, and morphological analyses, as well as additional sampling, to tackle persistent problems in the taxonomy of Oligoryzomys.


Subject(s)
Arvicolinae/genetics , Cell Nucleus/genetics , DNA Barcoding, Taxonomic , Databases, Genetic , Genome, Mitochondrial/genetics , Mitochondrial Dynamics/genetics , Animals , Species Specificity
18.
BMC Evol Biol ; 8: 199, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18616808

ABSTRACT

BACKGROUND: Within the subfamily Murinae, African murines represent 25% of species biodiversity, making this group ideal for detailed studies of the patterns and timing of diversification of the African endemic fauna and its relationships with Asia. Here we report the results of phylogenetic analyses of the endemic African murines through a broad sampling of murine diversity from all their distribution area, based on the mitochondrial cytochrome b gene and the two nuclear gene fragments (IRBP exon 1 and GHR). RESULTS: A combined analysis of one mitochondrial and two nuclear gene sequences consistently identified and robustly supported ten primary lineages within Murinae. We propose to formalize a new tribal arrangement within the Murinae that reflects this phylogeny. The diverse African murine assemblage includes members of five of the ten tribes and clearly derives from multiple faunal exchanges between Africa and Eurasia. Molecular dating analyses using a relaxed Bayesian molecular clock put the first colonization of Africa around 11 Mya, which is consistent with the fossil record. The main period of African murine diversification occurred later following disruption of the migration route between Africa and Asia about 7-9 Mya. A second period of interchange, dating to around 5-6.5 Mya, saw the arrival in Africa of Mus (leading to the speciose endemic Nannomys), and explains the appearance of several distinctive African lineages in the late Miocene and Pliocene fossil record of Eurasia. CONCLUSION: Our molecular survey of Murinae, which includes the most complete sampling so far of African taxa, indicates that there were at least four separate radiations within the African region, as well as several phases of dispersal between Asia and Africa during the last 12 My. We also reconstruct the phylogenetic structure of the Murinae, and propose a new classification at tribal level for this traditionally problematic group.


Subject(s)
Cell Nucleus/genetics , Genes, Mitochondrial/genetics , Murinae/classification , Murinae/genetics , Phylogeny , Africa , Animals , Evolution, Molecular , Geography , Sequence Analysis, DNA
19.
Genome Biol Evol ; 10(9): 2218-2239, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29931241

ABSTRACT

Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.


Subject(s)
Chiroptera/genetics , Genome, Mitochondrial , Amino Acid Substitution , Amino Acids/genetics , Animals , Biological Evolution , Chiroptera/physiology , Evolution, Molecular , Feeding Behavior , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , Nucleotides/genetics , Phylogeny
20.
PLoS One ; 13(12): e0206660, 2018.
Article in English | MEDLINE | ID: mdl-30557386

ABSTRACT

The spiny rats, genus Proechimys, have the highest species richness within the Echimyidae family, as well as species with high genetic variability. The genus distribution includes tropical South America and Central America south to Honduras. In this study, we evaluate the phylogeographic histories of Proechimys guyannensis and P. cuvieri using cytochrome b, in a densely sampled area in northeastern Amazon where both species are found in sympatry in different environments. For each species, Bayesian and Maximum Likelihood phylogenetic analysis were congruent and recovered similar clades in the studied area. Bayesian phylogenetic analysis using a relaxed molecular clock showed that these clusters of haplotypes diversified during Pleistocene for both species. Apparently, the large rivers of the region did not act as barriers, as some clades include specimens collected from opposite banks of Oiapoque, Araguari and Jari rivers. Bayesian skyline plot analysis showed recent demographic expansion in both species. The Pleistocene climatic changes in concert with the geologic changes in the Amazon fan probably acted as drivers in the diversification that we detected in these two spiny rats. Proechimys cuvieri and P. guyannensis show genetic structure in the eastern part of the Guiana region. Greater genetic distances observed in P. guyannensis, associated with highly structured groups, suggest that more detailed studies of systematics and ecology should be directed to this species.


Subject(s)
Climate Change , Cytochromes b/genetics , Genetic Variation , Haplotypes , Phylogeny , Rodentia/genetics , Animals , Brazil , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL