Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 252: 226-235, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28694054

ABSTRACT

PP-fold peptides such as peptide YY (PYY) and pancreatic polypeptide (PPY) are known to play key roles in vertebrate energy homeostasis. Until recently, no gene sequence was available for avian PYY and therefore a gap in knowledge of regulation of its expression exists in avian species. Here we further evidence the mRNA sequence for chicken PYY and show that the pancreas is the major site of its mRNA expression, with a secondary peak of expression around the distal jejunum, in contrast to mammals where the large intestine is the major site of PYY expression. We also demonstrate that pancreatic PYY expression is responsive to short-term and long-term nutritional state, increasing within hours of feeding, in contrast to intestinal PYY which does not fluctuate to the same extent, and pancreatic PPY which appears to be primarily determined by long-term energy state. Both pancreatic PYY and PPY expression were found to exhibit ontogeny, being evenly distributed throughout the pancreas in young (2wk) chicks but having a decreasing splenic to duodenal gradient by adolescence (12wk).


Subject(s)
Chickens/genetics , Gene Expression Regulation , Nutritional Status , Pancreas/metabolism , Pancreatic Polypeptide/genetics , Peptide YY/genetics , Animals , Base Sequence , DNA, Complementary/genetics , Duodenum/metabolism , Feeding Behavior , Gene Expression Profiling , Jejunum/metabolism , Pancreatic Polypeptide/metabolism , Peptide YY/metabolism , Quail/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Poult Sci ; 101(5): 101838, 2022 May.
Article in English | MEDLINE | ID: mdl-35378348

ABSTRACT

Broiler breeder chickens are commercially feed restricted to slow their growth and improve their health and production, however, there is research demonstrating that this leads to chronic hunger resulting in poor welfare. A challenge in these studies is to account for possible daily rhythms or the effects of time since last meal on measures relating hunger. To address this, we used 3 feed treatments: AL (ad libitum fed), Ram (restricted, fed in the morning), and Rpm (restricted, fed in the afternoon) to control for diurnal effects. We then conducted foraging motivation tests and collected home pen behavior and physiological samples at 4 times relative to feeding throughout a 24-h period. The feed treatment had the largest influence on the data, with AL birds weighing more, having lower concentrations of plasma NEFA, and mRNA expression of AGRP and NPY alongside higher expression of POMC in the basal hypothalamus than Ram or Rpm birds (P < 0.001). R birds were more successful at and had a shorter latency to complete the motivation test, and did more walking and less feeding than AL birds in the home pen (P < 0.01). There was little effect of time since last meal on many measures (P > 0.05) but AGRP expression was highest in the basal hypothalamus shortly after a meal (P < 0.05), blood plasma NEFA was higher in R birds just before feeding (P < 0.001) and glucose was higher in Ram birds just after feeding (P < 0.001), and the latency to complete the motivation test was shortest before the next meal (P < 0.05). Time of day effects were mainly found in the difference in activity levels in the home pen when during lights on and lights off periods. In conclusion, many behavioral and physiological hunger measures were not significantly influenced by time of day or time since the last meal. For the measures that do change, future studies should be designed so that sampling is balanced in such a way as to minimize bias due to these effects.


Subject(s)
Chickens , Hunger , Agouti-Related Protein , Animal Feed , Animals , Diet/veterinary , Fatty Acids, Nonesterified , Female , Motivation
SELECTION OF CITATIONS
SEARCH DETAIL