Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Genet Med ; 23(2): 331-340, 2021 02.
Article in English | MEDLINE | ID: mdl-33082559

ABSTRACT

PURPOSE: Geleophysic dysplasia (GD) and acromicric dysplasia (AD) are characterized by short stature, short extremities, and progressive joint limitation. In GD, cardiorespiratory involvement can result in poor prognosis. Dominant variants in the FBN1 and LTBP3 genes are responsible for AD or GD, whereas recessive variants in the ADAMTSL2 gene are responsible for GD only. The aim of this study was to define the natural history of these disorders and to establish genotype-phenotype correlations. METHODS: This monocentric retrospective study was conducted between January 2008 and December 2018 in a pediatric tertiary care center and included patients with AD or GD with identified variants (FBN1, LTBP3, or ADAMTSL2). RESULTS: Twenty-two patients with GD (12 ADAMTSL2, 8 FBN1, 2 LTBP3) and 16 patients with AD (15 FBN1, 1 LTBP3) were included. Early death occurred in eight GD and one AD. Among GD patients, 68% presented with heart valve disease and 25% developed upper airway obstruction. No AD patient developed life-threatening cardiorespiratory issues. A greater proportion of patients with either a FBN1 cysteine variant or ADAMTSL2 variants had a poor outcome. CONCLUSION: GD and AD are progressive multisystemic disorders with life-threatening complications associated with specific genotype. A careful multidisciplinary follow-up is needed.


Subject(s)
ADAMTS Proteins , Microfilament Proteins , ADAMTS Proteins/genetics , Bone Diseases, Developmental , Child , Fibrillin-1/genetics , Fibrillins , Genetic Association Studies , Humans , Limb Deformities, Congenital , Microfilament Proteins/genetics , Mutation , Retrospective Studies
2.
mBio ; 7(4)2016 08 02.
Article in English | MEDLINE | ID: mdl-27486197

ABSTRACT

UNLABELLED: Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization. IMPORTANCE: Meningococcal meningitis is a common cause of meningitis in infants and adults. Neisseria meningitidis (meningococcus) is also a commensal bacterium of the nasopharynx and is carried by 3 to 30% of healthy humans. Under some unknown circumstances, N. meningitidis is able to invade the bloodstream and cause either meningitis or a fatal septicemia known as purpura fulminans. The onset of symptoms is sudden, and death can follow within hours. Although many meningococcal virulence factors have been identified, the mechanisms that allow the bacterium to switch from the commensal to pathogen state remain unknown. Therefore, we used a Tn-seq strategy coupled to high-throughput DNA sequencing technologies to find genes for proteins used by N. meningitidis to specifically colonize epithelial cells and primary brain endothelial cells. We identified 383 genes and 8 intergenic regions containing sRNAs essential for growth and 288 genes and 33 intergenic regions containing sRNAs required specifically for host cell colonization.


Subject(s)
Endocytosis , Endothelial Cells/microbiology , Epithelial Cells/microbiology , Neisseria meningitidis/genetics , Neisseria meningitidis/pathogenicity , RNA, Small Untranslated/genetics , Virulence Factors/genetics , Cell Line , DNA Transposable Elements , Gene Knockout Techniques , Gene Library , Humans , Mutagenesis, Insertional , Neisseria meningitidis/growth & development
3.
Orphanet J Rare Dis ; 11: 26, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27004399

ABSTRACT

BACKGROUND: Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). METHODS: Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). RESULTS: We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. CONCLUSIONS: Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.


Subject(s)
DNA Repair/genetics , Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Endonucleases/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Poly-ADP-Ribose Binding Proteins , Transcription Factors/genetics , Xeroderma Pigmentosum Group D Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL