Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Publication year range
1.
J Cell Biochem ; 125(7): e30572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38706121

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) represents the most common subtype of renal tumor. Despite recent advances in identifying novel target molecules, the prognosis of patients with ccRCC continues to be poor, mainly due to the lack of sensitivity to chemo- and radiotherapy and because of one-third of renal cell carcinoma patients displays metastatic disease at diagnosis. Thus, identifying new molecules for early detection and for developing effective targeted therapies is mandatory. In this work, we focused on paraoxonase-2 (PON2), an intracellular membrane-bound enzyme ubiquitously expressed in human tissues, whose upregulation has been reported in a variety of malignancies, thus suggesting its possible role in cancer cell survival and proliferation. To investigate PON2 involvement in tumor cell metabolism, human ccRCC cell lines were transfected with plasmid vectors coding short harpin RNAs targeting PON2 transcript and the impact of PON2 silencing on cell viability, migration, and response to chemotherapeutic treatment was then explored. Our results showed that PON2 downregulation was able to trigger a decrease in proliferation and migration of ccRCC cells, as well as an enhancement of cell sensitivity to chemotherapy. Thus, taken together, data reported in this study suggest that the enzyme may represent an interesting therapeutic target for ccRCC.


Subject(s)
Aryldialkylphosphatase , Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Small Interfering , Humans , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338700

ABSTRACT

In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.


Subject(s)
Circulating MicroRNA , MicroRNAs , Pre-Eclampsia , Pregnancy , Humans , Female , Placenta/metabolism , Circulating MicroRNA/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Epigenesis, Genetic , RNA, Messenger/genetics
3.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235028

ABSTRACT

Spices, widely used to improve the sensory characteristics of food, contain several bioactive compounds as well, including polyphenols, carotenoids, and glucosynolates. Acting through multiple pathways, these bioactive molecules affect a wide variety of cellular processes involved in molecular mechanisms important in the onset and progress of human diseases. Capparis spinosa L. is an aromatic plant characteristic of the Mediterranean diet. Previous studies have reported that different parts (aerial parts, roots, and seeds) of C. spinosa exert various pharmacological activities. Flower buds of C. spinosa contain several bioactive compounds, including polyphenols and glucosinolates. Two different subspecies of C. spinosa L., namely, C. spinosa L. subsp. spinosa, and C. spinosa L. subsp. rupestris, have been reported. Few studies have been carried out in C. spinosa L. subsp. rupestris. The aim of our study was to investigate the phytochemical profile of floral buds of the less investigated species C. spinosa subsp. rupestris. Moreover, we investigated the effect of the extract from buds of C. spinosa subsp. rupestris (CSE) on cell proliferation, intracellular ROS levels, and expression of the antioxidant and anti-apoptotic enzyme paraoxonase-2 (PON2) in normal and cancer cells. T24 cells and Caco-2 cells were selected as models of advanced-stage human bladder cancer and human colorectal adenocarcinoma, respectively. The immortalized human urothelial cell line (UROtsa) and human dermal fibroblast (HuDe) were chosen as normal cell models. Through an untargeted metabolomic approach based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), our results demonstrate that C. spinosa subsp. rupestris flower buds contain polyphenols and glucosinolates able to exert a higher cytotoxic effect and higher intracellular reactive oxygen species (ROS) production in cancer cells compared to normal cells. Moreover, upregulation of the expression of the enzyme PON2 was observed in cancer cells. In conclusion, our data demonstrate that normal and cancer cells are differentially sensitive to CSE, which has different effects on PON2 gene expression as well. The overexpression of PON2 in T24 cells treated with CSE could represent a mechanism by which tumor cells protect themselves from the apoptotic process induced by glucosinolates and polyphenols.


Subject(s)
Capparis , Neoplasms , Antioxidants/pharmacology , Aryldialkylphosphatase , Caco-2 Cells , Capparis/chemistry , Carotenoids , Glucosinolates/analysis , Glucosinolates/pharmacology , Humans , Neoplasms/drug therapy , Oxidative Stress , Phytochemicals/pharmacology , Plant Extracts/chemistry , Polyphenols/analysis , Polyphenols/pharmacology , Reactive Oxygen Species
4.
Eur J Clin Microbiol Infect Dis ; 40(2): 451-455, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33245471

ABSTRACT

The ACE2 receptor is, so far, the best-known host factor for SARS-CoV-2 entry, but another essential element, the TMPRSS2 protease, has recently been identified. Here, we have analysed TMPRSS2 expression data in the lung correlating them with age, sex, diabetes, smoking habits, exposure to pollutant and other stimuli, in order to highlight which factors might alter TMPRSS2 expression, and thus impact the susceptibility to infection and COVID-19 prognosis. Moreover, we reported TMPRSS2 polymorphisms affecting its expression and suggested the ethnic groups more prone to COVID-19. Finally, we also highlighted a gender-specific co-expression between TMPRSS2 and other genes related to SARS-CoV-2 entry, maybe explaining the higher observed susceptibility of infection in men. Our results could be useful in designing potential prevention and treatment strategies regarding the COVID-19.


Subject(s)
COVID-19/etiology , SARS-CoV-2 , Serine Endopeptidases/genetics , Aged , Female , Humans , Lung/enzymology , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Serine Endopeptidases/physiology , Virus Internalization
5.
Lipids Health Dis ; 19(1): 188, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32819381

ABSTRACT

BACKGROUND: Obesity and adipose tissue expansion is characterized by a chronic state of systemic inflammation that contributes to disease. The neuropeptide, oxytocin, working through its receptor has been shown to attenuate inflammation in sepsis, wound healing, and cardiovascular disease. The current study examined the effects of chronic oxytocin infusions on adipose tissue inflammation in a murine model of obesity, the leptin receptor-deficient (db/db) mouse. METHODS: The effect of obesity on oxytocin receptor protein and mRNA expression in adipose tissue was evaluated by Western blotting and real-time polymerase chain reaction. Mice were implanted with osmotic minipumps filled with oxytocin or vehicle for 8 weeks. At study endpoint adipose tissue inflammation was assessed by measurement of cytokine and adipokine mRNA tissue levels, adipocyte size and macrophage infiltration via histopathology, and plasma levels of adiponectin and serum amyloid A as markers of systemic inflammation. RESULTS: The expression of adipose tissue oxytocin receptor was increased in obese db/db mice compared to lean controls. In adipose tissue oxytocin infusion reduced adipocyte size, macrophage infiltration, IL-6 and TNFα mRNA expression, and increased the expression of the anti-inflammatory adipokine, adiponectin. In plasma, oxytocin infusion reduced the level of serum amyloid A, a marker of systemic inflammation, and increased circulating adiponectin. CONCLUSIONS: In an animal model of obesity and diabetes chronic oxytocin treatment led to a reduction in visceral adipose tissue inflammation and plasma markers of systemic inflammation, which may play a role in disease progression.


Subject(s)
Oxytocin/pharmacology , Panniculitis/drug therapy , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Interleukin-6/genetics , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Obese , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism
6.
Clin Oral Investig ; 23(2): 829-838, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29882109

ABSTRACT

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is the most common malignancy of oral cavity. Despite advances in therapeutic approaches, the 5-year survival rate for oral cancer has not improved in the last three decades. Therefore, new molecular targets for early diagnosis and treatment of OSCC are needed. In the present study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT). We have previously shown that enzyme expression is upregulated in OSCC and NNMT knockdown in PE/CA PJ-15 cells significantly decreased cell growth in vitro and tumorigenicity in vivo. MATERIAL AND METHODS: To further explore the role of the enzyme in oral cancer cell metabolism, HSC-2 cells were transfected with the NNMT expression vector (pcDNA3-NNMT) and the effect of enzyme upregulation on cell proliferation was evaluated by MTT assay. Subsequently, we investigated at molecular level the role of NNMT on apoptosis and cell proliferation, by exploring the expression of ß-catenin, survivin, and Ki-67 by real-time PCR. Moreover, we performed immunohistochemistry on 20 OSCC tissue samples to explore the expression level of NNMT and survivin ΔEx3 isoform. RESULTS: Enzyme upregulation significantly increased cell growth in vitro. Moreover, a positive correlation between NNMT and survivin ΔEx3 isoform expression levels was found both in HSC-2 cells and in OSCC tissue samples. CONCLUSION: Taken together, our results indicate a possible involvement of NNMT in the proliferation and tumorigenic capacity of OSCC cells and seem to suggest that the enzyme could represent a potential target for the treatment of oral cancer. CLINICAL RELEVANCE: The involvement of NNMT in cell growth and anti-apoptotic mechanisms seems to suggest that this enzyme could be a new therapeutic target to improve the survival of OSCC patients.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Mouth Neoplasms/enzymology , Nicotinamide N-Methyltransferase/metabolism , Aged , Aged, 80 and over , Apoptosis , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Chromatography, High Pressure Liquid , Female , Humans , Immunohistochemistry , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Up-Regulation
7.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 51-55, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29974846

ABSTRACT

Renal cell carcinoma (RCC) is the most common tumor of the kidney and its major histologic subtype is clear cell RCC (ccRCC). About 30% of diagnosed ccRCCs already have metastasis. Traditionally, localized ccRCC is treated with nephrectomy but the relapse rate is 30%. Thus, the discovery of effective biomarkers for early detection, as well as the identification of new targets for molecular-based therapy of ccRCC are urgently required. In this study, we focused on molecules that could modulate the trascription of the enzyme nicotinamide N-methyltransferase (NNMT) that is known to be up-regulated in ccRCC. Signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL-6), hepatocyte nuclear factor 1 beta (HNF-1ß) and transforming growth factor beta 1 (TGF-ß1) expression levels were determined in tumor and non tumor samples obtained from 30 patients with ccRCC, using Real-Time PCR. Results obtained showed that TGF-ß1 is significantly (p<0.05) overexpressed in tumor compared with normal tissue samples of ccRCC patients. Conversely, we did not find any statistically significant difference concerning STAT3, IL-6, HNF-1ß gene expression levels. TGF-ß1 up-regulation could be responsible for the high levels of NNMT observed in ccRCC. Targeting TGF-ß1 could improve the outcome of ccRCC patients due to its role in epithelial-mesenchymal transition (EMT), that is known to be associated with a worse overall survival (OS) in this neoplasm.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/diagnosis , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/diagnosis , Nicotinamide N-Methyltransferase/genetics , Transforming Growth Factor beta1/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma, Renal Cell/genetics , Female , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Kidney/pathology , Kidney Neoplasms/genetics , Male , Middle Aged , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Transcription, Genetic , Transforming Growth Factor beta1/genetics
8.
Biomolecules ; 14(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397445

ABSTRACT

Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Endothelial Cells/metabolism , Phenotype , Reactive Oxygen Species/metabolism
9.
Cells ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534323

ABSTRACT

Extracellular vesicles (EVs) are small lipid particles secreted by almost all human cells into the extracellular space. They perform the essential function of cell-to-cell communication, and their role in promoting breast cancer progression has been well demonstrated. It is known that EVs released by triple-negative and highly aggressive MDA-MB-231 breast cancer cells treated with paclitaxel, a microtubule-targeting agent (MTA), promoted chemoresistance in EV-recipient cells. Here, we studied the RNA content of EVs produced by the same MDA-MB-231 breast cancer cells treated with another MTA, eribulin mesylate. In particular, we analyzed the expression of different RNA species, including mRNAs, lncRNAs, miRNAs, snoRNAs, piRNAs and tRNA fragments by RNA-seq. Then, we performed differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and miRNA-target identification. Our findings demonstrate the possible involvement of EVs from eribulin-treated cells in the spread of chemoresistance, prompting the design of strategies that selectively target tumor EVs.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Ketones , MicroRNAs , Polyether Polyketides , Humans , Female , Breast Neoplasms/pathology , MicroRNAs/genetics , Furans , Extracellular Vesicles/metabolism
10.
Hum Cell ; 37(3): 729-738, 2024 May.
Article in English | MEDLINE | ID: mdl-38504052

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive skin cancer, with a propensity for early metastasis. Therefore, early diagnosis and the identification of novel targets become fundamental. The enzyme nicotinamide N-methyltransferase (NNMT) catalyzes the reaction of N-methylation of nicotinamide and other analogous compounds. Although NNMT overexpression was reported in many malignancies, the significance of its dysregulation in cancer cell phenotype was partly clarified. Several works demonstrated that NNMT promotes cancer cell proliferation, migration, and chemoresistance. In this study, we investigated the possible involvement of this enzyme in MCC. Preliminary immunohistochemical analyses were performed to evaluate NNMT expression in MCC tissue specimens. To explore the enzyme function in tumor cell metabolism, MCC cell lines have been transfected with plasmids encoding for short hairpin RNAs (shRNAs) targeting NNMT mRNA. Preliminary immunohistochemical analyses showed elevated NNMT expression in MCC tissue specimens. The effect of enzyme downregulation on cell proliferation, migration, and chemosensitivity was then evaluated through MTT, trypan blue, and wound healing assays. Data obtained clearly demonstrated that NNMT knockdown is associated with a decrease of cell proliferation, viability, and migration, as well as with enhanced sensitivity to treatment with chemotherapeutic drugs. Taken together, these results suggest that NNMT could represent an interesting MCC biomarker and a promising target for targeted anti-cancer therapy.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Nicotinamide N-Methyltransferase/genetics , Nicotinamide N-Methyltransferase/metabolism , Carcinoma, Merkel Cell/genetics , Drug Resistance, Neoplasm/genetics , Cell Proliferation/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , RNA, Small Interfering/genetics
11.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111351

ABSTRACT

Meldonium (MID) is a synthetic drug designed to decrease the availability of L-carnitine-a main player in mitochondrial energy generation-thus modulating the cell pathways of energy metabolism. Its clinical effects are mostly evident in blood vessels during ischemic events, when the hyperproduction of endogenous carnitine enhances cell metabolic activities, leading to increased oxidative stress and apoptosis. MID has shown vaso-protective effects in model systems of endothelial dysfunction induced by high glucose or by hypertension. By stimulating the endothelial nitric oxide synthetase (eNOS) via PI3 and Akt kinase, it has shown beneficial effects on the microcirculation and blood perfusion. Elevated intraocular pressure (IOP) and endothelial dysfunction are major risk factors for glaucoma development and progression, and IOP remains the main target for its pharmacological treatment. IOP is maintained through the filtration efficiency of the trabecular meshwork (TM), a porous tissue derived from the neuroectoderm. Therefore, given the effects of MID on blood vessels and endothelial cells, we investigated the effects of the topical instillation of MID eye drops on the IOP of normotensive rats and on the cell metabolism and motility of human TM cells in vitro. Results show a significant dose-dependent decrease in the IOP upon topic treatment and a decrease in TM cell motility in the wound-healing assay, correlating with an enhanced expression of vinculin localized in focal adhesion plaques. Motility inhibition was also evident on scleral fibroblasts in vitro. These results may encourage a further exploration of MID eye drops in glaucoma treatment.

12.
Cancers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370817

ABSTRACT

Renal cell carcinoma (RCC) belongs to a heterogenous cancer group arising from renal tubular epithelial cells. Among RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most common variant, characterized by high aggressiveness, invasiveness and metastatic potential, features that lead to poor prognosis and high mortality rate. In addition, diagnosis of kidney cancer is incidental in the majority of cases, and this results in a late diagnosis, when the stage of the disease is advanced and the tumor has already metastasized. Furthermore, ccRCC treatment is complicated by its strong resistance to chemo- and radiotherapy. Therefore, there is active ongoing research focused on identifying novel biomarkers which could be useful for assessing a better prognosis, as well as new molecules which could be used for targeted therapy. In this light, several novel targeted therapies have been shown to be effective in prolonging the overall survival of ccRCC patients. Thus, the aim of this review is to analyze the actual state-of-the-art on ccRCC diagnosis, prognosis and therapeutic options, while also reporting the recent advances in novel biomarker discoveries, which could be exploited for a better prognosis or for targeted therapy.

13.
Cytokine ; 58(1): 50-6, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22266274

ABSTRACT

OBJECTIVE: To investigate the inflammatory cytokine expression pattern in trophoblastic tissue from women with unexplained recurrent miscarriage (RM). STUDY DESIGN: Trophoblasts were obtained during uterine evacuation from 11 women with RM and from 20 healthy pregnant women undergoing elective termination of pregnancy, who served as controls. The array was performed using GEArray Q Series Human Inflammatory Cytokines & Receptors Gene Array HS-015 membranes. Data were confirmed by quantitative real-time PCR. The Mann-Whitney U test was performed for statistical analysis. RESULTS: Microarray analysis identified three genes that were differentially expressed between RM patients and controls. We observed significant downregulation of Transforming Growth Factor beta 3 (TGF-ß3) and Interleukin 25 (IL-25) (5-fold reduction and 2.5-fold reduction, respectively) and significant upregulation of CD-25, also known as Interleukin 2 receptor alpha (IL-2RA) (7-fold increase) in women with RM compared with controls. The median ΔC(t) of TGF-ß3 was 8.2 (interquartile range, 7.67-8.9) in RM patients vs. 5.85 (interquartile range, 5.3-6.09) in controls; the median ΔC(t) of IL-25 was 5.18 (interquartile range, 4.46-5.76) in RM patients vs. 3.85 (interquartile range, 3.6-4.51) in controls, and the median ΔC(t) of CD-25 was 9.62 (interquartile range, 7.81-12.42) in RM patients vs. 12.44 (interquartile range, 11.02-13.86) in controls. DISCUSSION: Our results suggest that the immunological and inflammatory regulation mechanisms of the placental environment play a key role in recurrent miscarriage. The observed trophoblast cytokine expression pattern at the maternal-fetal interface confirms the immunotrophic theory, as demonstrated by a switch from a T-helper-1 (Th1) profile to a T-helper-2 (Th2) profile in women who experience recurrent miscarriages.


Subject(s)
Abortion, Habitual/immunology , Interleukin-17/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Transforming Growth Factor beta3/metabolism , Trophoblasts/immunology , Adult , Down-Regulation , Female , Humans , Pregnancy , Trophoblasts/metabolism , Up-Regulation
14.
Biomedicines ; 10(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36289850

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has high metastatic potential. The "genometastasis" theory proposes that the blood of some cancer patients contains elements able to transform healthy cells by transferring oncogenes. Since findings on genometastasis in PDAC are still scarce, we sought supporting evidence by treating non-tumour HEK293T and hTERT-HPNE human cell lines with sera of PDAC patients. Here, we showed that HEK293T cells have undergone malignant transformation, increased the migration and invasion abilities, and acquired a partial chemoresistance, whereas hTERT-HPNE cells were almost refractory to transformation by patients' sera. Next-generation sequencing showed that transformed HEK293T cells gained and lost several genomic regions, harbouring genes involved in many cancer-associated processes. Our results support the genometastasis theory, but further studies are needed for the identification of the circulating transforming elements. Such elements could also be useful biomarkers in liquid biopsy assays.

15.
Nutrients ; 14(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565677

ABSTRACT

Background: The inter-individual differences in taste perception find a possible rationale in genetic variations. We verified whether the presence of four different single nucleotide polymorphisms (SNPs) in genes encoding for bitter (TAS2R38; 145G > C; 785T > C) and sweet (TAS1R3; −1572C > T; −1266C > T) taste receptors influenced the recognition of the basic tastes. Furthermore, we tested if the allelic distribution of such SNPs varied according to BMI and whether the associations between SNPs and taste recognition were influenced by the presence of overweight/obesity. Methods: DNA of 85 overweight/obese patients and 57 normal weight volunteers was used to investigate the SNPs. For the taste test, filter paper strips were applied. Each of the basic tastes (sweet, sour, salty, bitter) plus pure rapeseed oil, and water were tested. Results: Individuals carrying the AV/AV diplotype of the TAS2R38 gene (A49P G/G and V262 T/T) were less sensitive to sweet taste recognition. These alterations remained significant after adjustment for gender and BMI. Moreover, a significant decrease in overall taste recognition associated with BMI and age was found. There was no significant difference in allelic distribution for the investigated polymorphisms between normal and overweight/obese patients. Conclusions: Our findings suggest that overall taste recognition depends on age and BMI. In the total population, the inter-individual ability to identify the sweet taste at different concentrations was related to the presence of at least one genetic variant for the bitter receptor gene but not to the BMI.


Subject(s)
Receptors, G-Protein-Coupled/genetics , Taste Perception , Taste , Humans , Obesity/genetics , Overweight , Polymorphism, Single Nucleotide , Taste/genetics
16.
Am J Obstet Gynecol ; 205(3): 236.e1-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21700268

ABSTRACT

OBJECTIVE: To determine placental gene expression of endothelial and inducible nitric oxide synthases and measure nitric oxide levels in patients with hemolysis, elevated liver enzyme levels, and low platelet count syndrome. STUDY DESIGN: Preterm placentas were obtained from 15 patients with hemolysis, elevated liver enzyme levels, and low platelet count syndrome and 30 controls matched for age, parity, and gestational age. mRNA levels were evaluated by real-time polymerase chain reaction, whereas nitric oxide and peroxynitrite production was measured by a commercially available kit. RESULTS: Placental gene expression of inducible nitric oxide and endothelial nitric oxide synthases were significantly lower in the hemolysis, elevated liver enzyme levels, and low platelet count syndrome group than in controls, whereas nitric oxide and peroxynitrite production were significantly higher in hemolysis, elevated liver enzyme levels, and low platelet count syndrome compared with controls. CONCLUSION: The reduced endothelial nitric oxide and inducible nitric oxide synthases gene expression in women with hemolysis, elevated liver enzyme levels, and low platelet count syndrome may indicate extreme placental dysfunction that is unable to compensate the endothelial derangement and the related hypertension. The higher nitric oxide formation found in hemolysis, elevated liver enzyme levels, and low platelet count syndrome placentas could be explained as a counteraction to the impaired fetoplacental perfusion, typical of the syndrome.


Subject(s)
HELLP Syndrome/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Placenta/metabolism , Adult , Female , Gestational Age , HELLP Syndrome/genetics , Humans , Infant, Newborn , Infant, Premature , Nitric Oxide/genetics , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type III/genetics , Peroxynitrous Acid/genetics , Peroxynitrous Acid/metabolism , Platelet Count , Pregnancy
17.
Biology (Basel) ; 10(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513850

ABSTRACT

Extracellular vesicles (EVs) are secreted from almost all human cells and mediate intercellular communication by transferring heterogeneous molecules (i.e., DNA, RNAs, proteins, and lipids). In this way, EVs participate in various biological processes, including immune responses. Viruses can hijack EV biogenesis systems for their dissemination, while EVs from infected cells can transfer viral proteins to uninfected cells and to immune cells in order to mask the infection or to trigger a response. Several studies have highlighted the role of native or engineered EVs in the induction of B cell and CD8(+) T cell reactions against viral proteins, strongly suggesting these antigen-presenting EVs as a novel strategy for vaccine design, including the emerging COVID-19. EV-based vaccines overcome some limitations of conventional vaccines and introduce novel unique characteristics useful in vaccine design, including higher bio-safety and efficiency as antigen-presenting systems and as adjuvants. Here, we review the state-of-the-art for antiviral EV-based vaccines, including the ongoing projects of some biotech companies in the development of EV-based vaccines for SARS-CoV-2. Finally, we discuss the limits for further development of this promising class of therapeutic agents.

18.
World J Gastroenterol ; 27(15): 1616-1629, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33958847

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death among cancers, it is characterized by poor prognosis and strong chemoresistance. In the PDAC microenvironment, stromal cells release different extracellular components, including CXCL12. The CXCL12 is a chemokine promoting the communication between tumour and stromal cells. Six different splicing isoforms of CXCL12 are known (α, ß, γ, δ, ε, θ) but their role in PDAC has not yet been characterized. AIM: To investigate the specific role of α, ß, and γ CXCL12 isoforms in PDAC onset. METHODS: We used hTERT-HPNE E6/E7/KRasG12D (Human Pancreatic Nestin-Expressing) cell line as a pancreatic pre-tumour model and exposed it to the α, ß, and γ CXCL12 isoforms. The altered expression profiles were assessed by microarray analyses and confirmed by Real-Time polymerase chain reaction. The functional enrichment analyses have been performed by Enrichr tool to highlight Gene Ontology enriched terms. In addition, wound healing assays have been carried out to assess the phenotypic changes, in terms of migration ability, induced by the α, ß, and γ CXCL12 isoforms. RESULTS: Microarray analysis of hTERT-HPNE cells treated with the three different CXCL12 isoforms highlighted that the expression of only a few genes was altered. Moreover, the α and ß isoforms showed an alteration in expression of different genes, whereas γ isoform affected the expression of genes also common with α and ß isoforms. The ß isoform altered the expression of genes mainly involved in cell cycle regulation. In addition, all isoforms affected the expression of genes associated to cell migration, adhesion and cytoskeleton. In vitro cell migration assay confirmed that CXCL12 enhanced the migration ability of hTERT-HPNE cells. Among the CXCL12 splicing isoforms, the γ isoform showed higher induction of migration than α and ß isoforms. CONCLUSION: Our data suggests an involvement and different roles of CXCL12 isoforms in PDAC onset. However, more investigations are needed to confirm these preliminary observations.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CXCL12/genetics , Gene Expression Regulation, Neoplastic , Humans , Microarray Analysis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Protein Isoforms/metabolism , Tumor Microenvironment
19.
Diagnostics (Basel) ; 11(2)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573278

ABSTRACT

The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.

20.
Reprod Biol Endocrinol ; 8: 1, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-20051099

ABSTRACT

BACKGROUND: Early pregnancy loss can be associated with trophoblast insufficiency and coagulation defects. Thrombomodulin is an endothelial-associated anticoagulant protein involved in the control of hemostasis and inflammation at the vascular beds and it's also a cofactor of the protein C anticoagulant pathway. DISCUSSION: We evaluate the Thrombomodulin expression in placental tissue from spontaneous recurrent miscarriage and voluntary abortion as controls. Thrombomodulin mRNA was determined using real-time quantitative polymerase chain reaction. Reduced expression levels of thrombomodulin were found in recurrent miscarriage group compared to controls (1.82-fold of reduction), that corresponds to a reduction of 45% (from control group Delta CT) of thrombomodulin expression in spontaneous miscarriage group respect the control groups. SUMMARY: We cannot state at present the exact meaning of a reduced expression of Thrombomodulin in placental tissue. Further studies are needed to elucidate the biological pathway of this important factor in the physiopathology of the trophoblast and in reproductive biology.


Subject(s)
Abortion, Habitual/genetics , Placenta/metabolism , Thrombomodulin/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/pathology , Case-Control Studies , Down-Regulation/genetics , Female , Gene Expression , Gestational Age , Humans , Placenta/pathology , Pregnancy , Thrombomodulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL