Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Infect Immun ; 90(1): e0084618a, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35076289

ABSTRACT

Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.

2.
Infect Immun ; 87(3)2019 03.
Article in English | MEDLINE | ID: mdl-30530620

ABSTRACT

Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.


Subject(s)
Antigens, Bacterial/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/pathogenicity , Animals , Mice
4.
Cell Microbiol ; 14(3): 368-85, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22066472

ABSTRACT

NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , HSP90 Heat-Shock Proteins/metabolism , Neisseria meningitidis/physiology , Amino Acid Sequence , Benzoquinones/pharmacology , Cells, Cultured , Escherichia coli/genetics , Escherichia coli/physiology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Host-Pathogen Interactions , Humans , Lactams, Macrocyclic/pharmacology , Meningococcal Infections/metabolism , Meningococcal Infections/microbiology , Molecular Sequence Data , Protein Binding , Recombinant Proteins/metabolism
5.
J Bacteriol ; 193(1): 107-15, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20971901

ABSTRACT

NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine. Structure prediction indicates that NadA is made by a COOH-terminal membrane anchor (also necessary for autotranslocation to the bacterial surface), an intermediate elongated coiled-coil-rich stalk, and an NH(2)-terminal region involved in cell interaction. Electron microscopy analysis and structure prediction suggest that the apical region of NadA forms a compact and globular domain. Deletion studies proved that the NH(2)-terminal sequence (residues 24 to 87) is necessary for cell adhesion. In this study, to better define the NadA cell binding site, we exploited (i) a panel of NadA mutants lacking sequences along the coiled-coil stalk and (ii) several oligoclonal rabbit antibodies, and their relative Fab fragments, directed to linear epitopes distributed along the NadA ectodomain. We identified two critical regions for the NadA-cell receptor interaction with Chang cells: the NH(2) globular head domain and the NH(2) dimeric intrachain coiled-coil α-helices stemming from the stalk. This raises the importance of different modules within the predicted NadA structure. The identification of linear epitopes involved in receptor binding that are able to induce interfering antibodies reinforces the importance of NadA as a vaccine antigen.


Subject(s)
Adhesins, Bacterial/metabolism , Epitope Mapping , Neisseria meningitidis/metabolism , Protein Structure, Secondary/physiology , Adhesins, Bacterial/genetics , Animals , Antibodies, Bacterial , Binding Sites , Cell Line , Gene Expression Regulation, Bacterial , Humans , Microscopy, Electron , Models, Molecular , Neisseria meningitidis/genetics , Protein Binding , Protein Structure, Secondary/genetics , Protein Structure, Tertiary , Rabbits
6.
J Leukoc Biol ; 83(5): 1100-10, 2008 May.
Article in English | MEDLINE | ID: mdl-18299457

ABSTRACT

Specific surface proteins of Neisseria meningitidis have been proposed to stimulate leukocytes during tissue invasion and septic shock. In this study, we demonstrate that the adhesin N. meningitidis Adhesin A (NadA) involved in the colonization of the respiratory epithelium by hypervirulent N. meningitidis B strains also binds to and activates human monocytes/macrophages. Expression of NadA on the surface on Escherichia coli does not increase bacterial-monocyte association, but a NadA-positive strain induced a significantly higher amount of TNF-alpha and IL-8 compared with the parental NadA-negative strain, suggesting that NadA has an intrinsic stimulatory action on these cells. Consistently, highly pure, soluble NadA(Delta351-405), a proposed component of an antimeningococcal vaccine, efficiently stimulates monocytes/macrophages to secrete a selected pattern of cytokines and chemotactic factors characterized by high levels of IL-8, IL-6, MCP-1, and MIP-1alpha and low levels of the main vasoactive mediators TNF-alpha and IL-1. NadA(Delta351-405) also inhibited monocyte apoptosis and determined its differentiation into a macrophage-like phenotype.


Subject(s)
Adhesins, Bacterial/physiology , Leukocytes/microbiology , Macrophages/microbiology , Monocytes/microbiology , Neisseria meningitidis/pathogenicity , Adhesins, Bacterial/genetics , Epithelial Cells/microbiology , Escherichia coli/genetics , Escherichia coli/pathogenicity , HeLa Cells/microbiology , Humans , Interleukin-8/blood , Leukocytes/physiology , Microscopy, Confocal , Microscopy, Fluorescence , Tumor Necrosis Factor-alpha/blood , Virulence
7.
Vaccine ; 34(14): 1704-11, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26876441

ABSTRACT

BACKGROUND: Neisseria meningitidis are common colonizers of the human nasopharynx. In some circumstances, N. meningitidis becomes an opportunistic pathogen that invades tissues and causes meningitis. While a vaccine against a number of serogroups has been in effective use for many years, a vaccine against N. meningitidis group B has not yet been universally adopted. Bacterial heat shock protein complex (HSPC) vaccines comprise bacterial HSPs, purified with their chaperoned protein cargo. HSPC vaccines use the intrinsic adjuvant activity of their HSP, thought to act via Toll-like receptors (TLR), to induce an immune response against their cargo antigens. This study evaluated HSPC vaccines from N. meningitidis and the closely related commensal N. lactamica. RESULTS: The protein composition of N. lactamica and N. meningitidis HSPCs were similar. Using human HEK293 cells we found that both HSPCs can induce an innate immune response via activation of TLR2. However, stimulation of TLR2 or TLR4 deficient murine splenocytes revealed that HSPCs can activate an innate immune response via multiple receptors. Vaccination of wildtype mice with the Neisseria HSPC induced a strong antibody response and a Th1-restricted T helper response. However, vaccination of mice deficient in the major TLR adaptor protein, MyD88, revealed that while the Th1 response to Neisseria HSPC requires MyD88, these vaccines unexpectedly induced an antigen-specific antibody response via a MyD88-independent mechanism. CONCLUSIONS: N. lactamica and N. meningitidis HSPC vaccines both have potential utility for immunising against neisserial meningitis without the requirement for an exogenous adjuvant. The mode of action of these vaccines is highly complex, with HSPCs inducing immune responses via both MyD88-dependent and -independent mechanisms. In particular, these HSPC vaccines induced an antibody response without detectable T cell help.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Vaccines/immunology , Heat-Shock Proteins/immunology , Immunity, Innate , Neisseria meningitidis , Animals , Bacterial Proteins/immunology , Cytokines/immunology , HEK293 Cells , Humans , Immunity, Humoral , Immunoglobulin G/blood , Meningitis, Meningococcal/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , Neisseria lactamica , Proteome , Spleen/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
8.
Protein Eng Des Sel ; 25(4): 199-203, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22301276

ABSTRACT

In order to understand the role of tryptophan in the mechanisms of fibrils formation, the ability of a series of analogs of the residue 7-18 span of myoglobin to form amyloid-like fibrils was investigated. Alternatively one or both tryptophans were substituted with alanine and leucine, to determine the contribution of hydrophobicity and aromaticity. The scale of aggregation propensity of the peptides determined indicates that tryptophan is crucial for the amyloidogenic process. Since the rare tryptophan residue is generally engaged in structural roles in proteins, or when exposed serves as binding sites, we surmise that its exposure in the amyloidogenic fragments allows for intermolecular clustering with residues from other molecules leading to the formation of amyloid aggregates.


Subject(s)
Amyloid/chemistry , Myoglobin/chemistry , Tryptophan/genetics , Amyloid/metabolism , Binding Sites , Myoglobin/genetics , Myoglobin/metabolism , Protein Conformation
9.
PLoS One ; 6(9): e25089, 2011.
Article in English | MEDLINE | ID: mdl-21949862

ABSTRACT

The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by anti-TLR2 antibodies. We propose that hsp90-dependent recruitment into an hsp90/hsp70/TLR4 transducing signal complex is necessary for the immune-stimulating activity of NadA(Δ351-405) anti-MenB vaccine candidate.


Subject(s)
Adhesins, Bacterial/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Meningococcal Infections/prevention & control , Monocytes/metabolism , Neisseria meningitidis/metabolism , Peptide Fragments/immunology , Animals , Antibodies, Monoclonal/pharmacology , Blotting, Western , Cells, Cultured , Cytokines/metabolism , Electrophoresis, Gel, Two-Dimensional , Flow Cytometry , Humans , Immunization , Immunoprecipitation , Male , Meningococcal Infections/immunology , Meningococcal Infections/microbiology , Monocytes/cytology , Monocytes/immunology , Neisseria meningitidis/immunology , Protein Binding , Rabbits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Toll-Like Receptor 4/metabolism
10.
J Leukoc Biol ; 86(1): 143-53, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19401383

ABSTRACT

Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).


Subject(s)
Adhesins, Bacterial/immunology , Macrophages/immunology , Monocytes/microbiology , Neisseria meningitidis/chemistry , Antigens, Surface/analysis , Cell Membrane/microbiology , Cells, Cultured , Chemokines/metabolism , Cytokines/metabolism , Humans , Macrophages/microbiology , Monocytes/immunology , Neisseria meningitidis/enzymology , Oxo-Acid-Lyases
11.
J Immunol ; 179(6): 3904-16, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17785828

ABSTRACT

A soluble recombinant form of Neisseria meningitidis adhesin A (NadADelta351-405), proposed as a constituent of anti-meningococcal B vaccines, is here shown to specifically interact with and immune-modulate human monocyte-derived dendritic cells (mo-DCs). After priming with IFN-gamma and stimulation with NadADelta351-405, mo-DCs strongly up-regulated maturation markers CD83, CD86, CD80, and HLA-DR, secreted moderate quantities of TNF-alpha, IL-6, and IL-8, and produced a slight, although significant, amount of IL-12p70. Costimulation of mo-DCs with NadADelta351-405 and the imidoazoquinoline drug R-848, believed to mimic bacterial RNA, increased CD86 in an additive way, but strongly synergized the secretion of IL-12p70, IL-1, IL-6, TNF-alpha, and MIP-1alpha, especially after IFN-gamma priming. CD86/CD80 overexpression correlated with the occupation of high-(kd approximately 80 nM) and low-(kd approximately 4 muM) affinity binding sites for NadADelta351-405. Alternatively, secretion of IL-12p70 and TNF-alpha, IL-6, and IL-8 corresponded to the occupation of high- or low-affinity receptors, respectively. Mo-DCs matured by IFN-gamma and NadADelta351-405 supported the proliferation of naive CD4+ T lymphocytes, inducing the differentiation of both IFN-gamma and IL-4 producing phenotypes. Our data show that NadA not only is a good immunogen but is as well endowed with a proimmune, self-adjuvating, activity.


Subject(s)
Adhesins, Bacterial/metabolism , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Imidazoles/pharmacology , Interferon-gamma/physiology , Neisseria meningitidis/immunology , Adhesins, Bacterial/genetics , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Flagellin/pharmacology , Humans , Lipopolysaccharides/pharmacology , Monocytes/cytology , Monocytes/metabolism , Oligodeoxyribonucleotides/pharmacology , Protein Binding/immunology , Transcriptional Activation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL