Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20159905

ABSTRACT

The SARS-CoV-2 Spike protein acquired a D614G mutation early in the COVID-19 pandemic that appears to confer on the virus greater infectivity and is now the globally dominant form of the virus. Certain of the current vaccines entering phase 3 trials are based on the original D614 form of Spike with the goal of eliciting protective neutralizing antibodies. To determine whether D614G mediates neutralization-escape that could compromise vaccine efficacy, sera from Spike-immunized mice, nonhuman primates and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 Spike on their surface. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by monoclonal antibodies against the receptor binding domain and by convalescent sera from people known to be infected with either the D614 or G614 form of the virus. These results indicate that a gain in infectivity provided by D614G came at the cost of making the virus more vulnerable to neutralizing antibodies, and that the mutation is not expected to be an obstacle for current vaccine development.

2.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-069054

ABSTRACT

We have developed an analysis pipeline to facilitate real-time mutation tracking in SARS-CoV-2, focusing initially on the Spike (S) protein because it mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapeutics. To date we have identified thirteen mutations in Spike that are accumulating. Mutations are considered in a broader phylogenetic context, geographically, and over time, to provide an early warning system to reveal mutations that may confer selective advantages in transmission or resistance to interventions. Each one is evaluated for evidence of positive selection, and the implications of the mutation are explored through structural modeling. The mutation Spike D614G is of urgent concern; it began spreading in Europe in early February, and when introduced to new regions it rapidly becomes the dominant form. Also, we present evidence of recombination between locally circulating strains, indicative of multiple strain infections. These finding have important implications for SARS-CoV-2 transmission, pathogenesis and immune interventions.

SELECTION OF CITATIONS
SEARCH DETAIL