Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hum Mol Genet ; 27(12): 2039-2051, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29590342

ABSTRACT

Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis.


Subject(s)
Autism Spectrum Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Adolescent , Adult , Aged , Animals , Autism Spectrum Disorder/physiopathology , Child , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fragile X Mental Retardation Protein/biosynthesis , Fragile X Syndrome/physiopathology , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , Male , Mice , Mice, Knockout , Middle Aged , Neurons/metabolism , Neurons/pathology , Young Adult
2.
Hum Mutat ; 36(8): 787-96, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25952305

ABSTRACT

Noonan syndrome (NS) is a relatively common developmental disorder with a pleomorphic phenotype. Mutations causing NS alter genes encoding proteins involved in the RAS-MAPK pathway. We and others identified Casitas B-lineage lymphoma proto-oncogene (CBL), which encodes an E3-ubiquitin ligase acting as a tumor suppressor in myeloid malignancies, as a disease gene underlying a condition clinically related to NS. Here, we further explored the spectrum of germline CBL mutations and their associated phenotype. CBL mutation scanning performed on 349 affected subjects with features overlapping NS and no mutation in NS genes allowed the identification of five different variants with pathological significance. Among them, two splice-site changes, one in-frame deletion, and one missense mutation affected the RING domain and/or the adjacent linker region, overlapping cancer-associated defects. A novel nonsense mutation generating a v-Cbl-like protein able to enhance signal flow through RAS was also identified. Genotype-phenotype correlation analysis performed on available records indicated that germline CBL mutations cause a variable phenotype characterized by a relatively high frequency of neurological features, predisposition to juvenile myelomonocytic leukemia, and low prevalence of cardiac defects, reduced growth, and cryptorchidism. Finally, we excluded a major contribution of two additional members of the CBL family, CBLB and CBLC, to NS and related disorders.


Subject(s)
Genetic Variation , Germ-Line Mutation , Proto-Oncogene Proteins c-cbl/genetics , Child, Preschool , Female , Genetic Association Studies , Humans , Male , Noonan Syndrome/genetics , Noonan Syndrome/physiopathology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-cbl/metabolism
4.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899894

ABSTRACT

Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.


Subject(s)
Fragile X Syndrome , Neural Stem Cells , Humans , Amyloid beta-Protein Precursor/metabolism , Fragile X Syndrome/genetics , Neural Stem Cells/metabolism , Neurons/metabolism
5.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Article in English | MEDLINE | ID: mdl-36996810

ABSTRACT

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Subject(s)
Fragile X Syndrome , Animals , Mice , Fragile X Mental Retardation Protein/genetics , Actins/metabolism , Brain/metabolism , Disease Models, Animal , Mice, Knockout , Dendritic Spines/metabolism , Mammals/metabolism
6.
Cell Death Dis ; 13(8): 719, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982038

ABSTRACT

Converging evidence indicates that the Fragile X Messenger Ribonucleoprotein (FMRP), which absent or mutated in Fragile X Syndrome (FXS), plays a role in many types of cancers. However, while FMRP roles in brain development and function have been extensively studied, its involvement in the biology of brain tumors remains largely unexplored. Here we show, in human glioblastoma (GBM) biopsies, that increased expression of FMRP directly correlates with a worse patient outcome. In contrast, reductions in FMRP correlate with a diminished tumor growth and proliferation of human GBM stem-like cells (GSCs) in vitro in a cell culture model and in vivo in mouse brain GSC xenografts. Consistently, increased FMRP levels promote GSC proliferation. To characterize the mechanism(s) by which FMRP regulates GSC proliferation, we performed GSC transcriptome analyses in GSCs expressing high levels of FMRP, and in these GSCs after knockdown of FMRP. We show that the WNT signalling is the most significantly enriched among the published FMRP target genes and genes involved in ASD. Consistently, we find that reductions in FMRP downregulate both the canonical WNT/ß-Catenin and the non-canonical WNT-ERK1/2 signalling pathways, reducing the stability of several key transcription factors (i.e. ß-Catenin, CREB and ETS1) previously implicated in the modulation of malignant features of glioma cells. Our findings support a key role for FMRP in GBM cancer progression, acting via regulation of WNT signalling.


Subject(s)
Brain Neoplasms , Fragile X Mental Retardation Protein/metabolism , Glioblastoma , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Ribonucleoproteins , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
7.
Cell Rep ; 21(3): 679-691, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045836

ABSTRACT

Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function.


Subject(s)
Cytoskeletal Proteins/metabolism , Disks Large Homolog 4 Protein/metabolism , Intelligence , Nerve Tissue Proteins/metabolism , Nervous System/metabolism , Nervous System/physiopathology , Synapses/metabolism , Animals , Gene Knock-In Techniques , Humans , Mice, Knockout , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL