Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37889259

ABSTRACT

In 1989, Bouvet and Jeanjean delineated five proteolytic genomic species (GS) of Acinetobacter, each with two to four human isolates. Three were later validly named, whereas the remaining two (GS15 and GS16) have been awaiting nomenclatural clarification. Here we present the results of the genus-wide taxonomic study of 13 human strains classified as GS16 (n=10) or GS15 (n=3). Based on core genome phylogenetic analysis, the strains formed two respective but closely related phylogroups within the Acinetobacter haemolytic clade. The intraspecies genomic average nucleotide identity based on blast (ANIb) values for GS16 and GS15 reached ≥94.9 % and ≥98.7, respectively, whereas ANIb values between them were 92.5-93.5% and those between them and the known species were ≤91.5 %. GS16 and GS15 could be differentiated from the other Acinetobacter species by their ability to lyse gelatin and sheep blood and to assimilate d,l-lactate, along with their inability to acidify d-glucose and assimilate glutarate. In contrast, GS16 and GS15 were indistinguishable from one another by metabolic/physiological features or whole-cell MALDI-TOF mass spectra. All the GS15/GS16 genomes contained genes encoding a class D ß-lactamase, Acinetobacter-derived cephalosporinase and aminoglycoside 6'-N-acetyltransferase. Searching NCBI databases revealed genome sequences of three additional isolates of GS16, but none of GS15. We conclude that our data support GS16 as representing a novel species, but leave the question of the taxonomic status of GS15 open, given its close relatedness to GS16 and the small number of available strains. We propose the name Acinetobacter higginsii sp. nov. for GS16, with the type strain NIPH 1872T (CCM 9243T=CIP 70.18T=ATCC 17988T).


Subject(s)
Acinetobacter , Humans , Animals , Sheep , Sequence Analysis, DNA , Phylogeny , Fatty Acids/chemistry , Bacterial Typing Techniques , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Base Composition , Genomics , Nucleic Acid Hybridization
2.
Plasmid ; 119-120: 102616, 2022.
Article in English | MEDLINE | ID: mdl-34953823

ABSTRACT

The bioinformatic analysis that we made of 492 Acinetobacter baumannii plasmid sequences identified 418 genes encoding Replication Initiator (Rep) proteins that fell into at least fourteen groups according to the protein domains that they contained. The most abundant group of Rep proteins contained a Rep_3 superfamily domain, followed by Rep proteins containing Replicase/PriCT_1 superfamily domains, and then by Reps possessing only an HTH_MerR-SF superfamily domain. The remaining eleven groups contain only a few members. To evaluate the diversity of these Rep proteins, we classify them using the current scheme of GR homology groups, which contains 34 groups. However, we needed to create 22 additional GR homology groups to capture all the Rep protein diversity of the plasmid collection. Finally, our bioinformatic analysis suggests that a large fraction of the plasmids seem to have a restricted host range limited to Acinetobacter species, except for those belonging to GR38 that have a very wide host range. To facilitate the future analysis of the Rep proteins, we included a list of the DNA and protein sequences, in fasta format, of the representatives of each one of the GR homology groups.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , DNA Replication , Plasmids/genetics
3.
Arch Virol ; 166(5): 1401-1408, 2021 May.
Article in English | MEDLINE | ID: mdl-33635432

ABSTRACT

Bacteriophages are considered the most abundant biological entities on earth, and they are able to modulate the populations of their bacterial hosts. Although the potential of bacteriophages has been accepted as an alternative strategy to combat multidrug-resistant pathogenic bacteria, there still exists a considerable knowledge gap regarding their genetic diversity, which hinders their use as antimicrobial agents. In this study, we undertook a genomic and phylogenetic characterization of the phage Ab11510-phi, which was isolated from a multidrug-resistant Acinetobacter baumannii strain (Ab11510). We found that Ab11510-phi has a narrow host range and belongs to a small group of transposable phages of the genus Vieuvirus that have only been reported to infect Acinetobacter bacteria. Finally, we showed that Ab11510-phi (as well as other vieuvirus phages) has a high level of mosaicism. On a broader level, we demonstrate that comparative genomics and phylogenetic analysis are necessary tools for the proper characterization of phage diversity.


Subject(s)
Acinetobacter baumannii/virology , Drug Resistance, Multiple, Bacterial , Siphoviridae/classification , Siphoviridae/genetics , Acinetobacter baumannii/physiology , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/physiology , DNA, Viral/genetics , Genome, Viral/genetics , Genomics , Host Specificity , Phylogeny , Siphoviridae/physiology , Viral Proteins/genetics
4.
Genomics ; 112(2): 1813-1820, 2020 03.
Article in English | MEDLINE | ID: mdl-31689478

ABSTRACT

There is increased evidence demonstrating the association between Crohn's Disease (CD), a type of Inflammatory Bowel Disease (IBD), and non-diarrheagenic Adherent/Invasive Escherichia coli (AIEC) isolates. AIEC strains are phenotypically characterized by their adhesion, invasion and intra-macrophage survival capabilities. In the present study, the genomes of five AIEC strains isolated from individuals without IBD (four from healthy donors and one from peritoneal liquid) were sequenced and compared with AIEC prototype strains (LF82 and NRG857c), and with extra-intestinal uropathogenic strain (UPEC CFT073). Non-IBD-AIEC strains showed an Average Nucleotide Identity up to 98% compared with control strains. Blast identities of the five non-IBD-AIEC strains were higher when compared to AIEC and UPEC reference strains than with another E. coli pathotypes, suggesting a relationship between them. The SNPs phylogeny grouped the five non-IBD-AIEC strains in one separated cluster, which indicates the emergence of these strains apart from the AIEC group. Additionally, four genomic islands not previously reported in AIEC strains were identified. An incomplete Type VI secretion system was found in non-IBD-AIEC strains; however, the Type II secretion system was complete. Several groups of genes reported in AIEC strains were searched in the five non-IBD-AIEC strains, and the presence of fimA, fliC, fuhD, chuA, irp2 and cvaC were confirmed. Other virulence factors were detected in non-IBD-AIEC strains, which were absent in AIEC reference strains, including EhaG, non-fimbrial adhesin 1, PapG, F17D-G, YehA/D, FeuC, IucD, CbtA, VgrG-1, Cnf1 and HlyE. Based on the differences in virulence determinants and SNPs, it is plausible to suggest that non-IBD AIEC strains belong to a different pathotype.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , Phylogeny , Bacterial Adhesion , Drug Resistance, Bacterial , Escherichia coli/classification , Escherichia coli/pathogenicity , Feces/microbiology , Genomic Islands , Healthy Volunteers , Humans , Polymorphism, Single Nucleotide , Virulence Factors/genetics
5.
Genet Mol Biol ; 42(2): 488-493, 2019.
Article in English | MEDLINE | ID: mdl-31323081

ABSTRACT

Mosses in conjunction with hornworts and liverworts are collectively referred to as bryophytes. These seedless, nonvascular plants are the closest extant relatives of early terrestrial plants and their study is essential to understand the evolutionary first steps of land plants. Here we report the complete chloroplast (cp) genome sequence of Pseudocrossidium replicatum, a moss belonging to the Pottiaceae family that is common in the central highlands of Mexico, in South America, in southern USA, and in Kenia. The cp genome (plastome) of P. replicatum is 123,512 bp in size, comprising inverted repeats of 9,886 bp and single-copy regions of 85,146 bp (LSC) and 18,594 bp (SSC). The plastome encodes 82 different proteins, 31 different tRNAs, and 4 different rRNAs. Phylogenetic analysis using 16 cp protein-coding genes demonstrated that P. replicatum is closely related to Syntrichia ruralis, and the most basal mosses are Takakia lepidozioides followed by Sphagnum palustre. Our analysis indicates that during the evolution of the mosses' plastome, eight genes were lost. The complete plastome sequence reported here can be useful in evolutionary and population genetics.

6.
Plasmid ; 78: 48-58, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25644116

ABSTRACT

The maintenance of large plasmid in a wide variety of alpha-proteobacteria depends on the repABC replication/segregation unit. The intergenic repB-repC region of these plasmids encodes a countertranscribed RNA (ctRNA) that modulates the transcription/translation rate of RepC, the initiator protein. The ctRNA acts as a strong incompatibility factor when expressed in trans. We followed a site directed mutagenesis approach to map those sequences of the ctRNA that are required for plasmid incompatibility and for plasmid replication control. We found that the first three nucleotides of the 5'-end of the ctRNA are essential for interactions with its target RNA. We also found that stretches of 4-5 nucleotides of non-complementarity within the first 10 nucleotides of the left arm of the ctRNA and the target RNA are sufficient to avoid plasmid incompatibility. Additionally, miniplasmid derivatives expressing ctRNAs with mutations in the 5' end or small deletions in the ctRNA are capable of controlling their own replication and coexisting with the parental plasmid. We suggest that a mechanism that could have a crucial role in the speciation process of repABC plasmids is to accumulate enough changes in this small region of the ctRNA gene to disrupt heteroduplex formation between the target RNA of one plasmid and the ctRNA of the other. Plasmids carrying these changes will not have defects in their maintenance.


Subject(s)
DNA Replication , Plasmids/genetics , RNA, Antisense , Rhizobium etli/genetics , Base Sequence , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Mutation , Operon , Protein Biosynthesis , Transcription, Genetic
7.
Microbiol Resour Announc ; 13(3): e0086123, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38294215

ABSTRACT

We report the draft genomes of four Kluyveromyces marxianus isolates obtained from the elaboration process of henequen (Agave fourcroydes) mezcal, a Mexican alcoholic beverage. The average nucleotide identity analysis revealed that isolates derived from agave plants are distinct from those from other environments, including agave fermentations.

8.
Front Microbiol ; 15: 1335997, 2024.
Article in English | MEDLINE | ID: mdl-38655087

ABSTRACT

Introduction: The Acinetobacter calcoaceticus-Acinetobacter baumannii complex, or Acb complex, consists of six species: Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter seifertii, and Acinetobacter lactucae. A. baumannii is the most clinically significant of these species and is frequently related to healthcare-associated infections (HCAIs). Clustered regularly interspaced short palindromic repeat (CRISPR) arrays and associated genes (cas) constitute bacterial adaptive immune systems and function as variable genetic elements. This study aimed to conduct a genomic analysis of Acb complex genomes available in databases to describe and characterize CRISPR systems and cas genes. Methods: Acb complex genomes available in the NCBI and BV-BRC databases, the identification and characterization of CRISPR-Cas systems were performed using CRISPRCasFinder, CRISPRminer, and CRISPRDetect. Sequence types (STs) were determined using the Oxford scheme and ribosomal multilocus sequence typing (rMLST). Prophages were identified using PHASTER and Prophage Hunter. Results: A total of 293 genomes representing six Acb species exhibited CRISPR-related sequences. These genomes originate from various sources, including clinical specimens, animals, medical devices, and environmental samples. Sequence typing identified 145 ribosomal multilocus sequence types (rSTs). CRISPR-Cas systems were confirmed in 26.3% of the genomes, classified as subtypes I-Fa, I-Fb and I-Fv. Probable CRISPR arrays and cas genes associated with CRISPR-Cas subtypes III-A, I-B, and III-B were also detected. Some of the CRISPR-Cas systems are associated with genomic regions related to Cap4 proteins, and toxin-antitoxin systems. Moreover, prophage sequences were prevalent in 68.9% of the genomes. Analysis revealed a connection between these prophages and CRISPR-Cas systems, indicating an ongoing arms race between the bacteria and their bacteriophages. Furthermore, proteins associated with anti-CRISPR systems, such as AcrF11 and AcrF7, were identified in the A. baumannii and A. pittii genomes. Discussion: This study elucidates CRISPR-Cas systems and defense mechanisms within the Acb complex, highlighting their diverse distribution and interactions with prophages and other genetic elements. This study also provides valuable insights into the evolution and adaptation of these microorganisms in various environments and clinical settings.

9.
BMC Microbiol ; 13: 264, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24262067

ABSTRACT

BACKGROUND: Our observation that in the Mexican Salmonella Typhimurium population none of the ST19 and ST213 strains harbored both the Salmonella virulence plasmid (pSTV) and the prevalent IncA/C plasmid (pA/C) led us to hypothesize that restriction to horizontal transfer of these plasmids existed. We designed a conjugation scheme using ST213 strain YU39 as donor of the blaCMY-2 gene (conferring resistance to ceftriaxone; CRO) carried by pA/C, and two E. coli lab strains (DH5α and HB101) and two Typhimurium ST19 strains (SO1 and LT2) carrying pSTV as recipients. The aim of this study was to determine if the genetic background of the different recipient strains affected the transfer frequencies of pA/C. RESULTS: YU39 was able to transfer CRO resistance, via a novel conjugative mechanism, to all the recipient strains although at low frequencies (10-7 to 10-10). The presence of pSTV in the recipients had little effect on the conjugation frequency. The analysis of the transconjugants showed that three different phenomena were occurring associated to the transfer of blaCMY-2: 1) the co-integration of pA/C and pX1; 2) the transposition of the CMY region from pA/C to pX1; or 3) the rearrangement of pA/C. In addition, the co-lateral mobilization of a small (5 kb) ColE1-like plasmid was observed. The transconjugant plasmids involving pX1 re-arrangements (either via co-integration or ISEcp1-mediated transposition) obtained the capacity to conjugate at very high levels, similar to those found for pX1 (10-1). Two versions of the region containing blaCMY-2 were found to transpose to pX1: the large version was inserted into an intergenic region located where the "genetic load" operons are frequently inserted into pX1, while the short version was inserted into the stbDE operon involved in plasmid addiction system. This is the first study to report the acquisition of an extended spectrum cephalosporin (ESC)-resistance gene by an IncX1 plasmid. CONCLUSIONS: We showed that the transfer of the YU39 blaCMY-2 gene harbored on a non- conjugative pA/C requires the machinery of a highly conjugative pX1 plasmid. Our experiments demonstrate the complex interactions a single strain can exploit to contend with the challenge of horizontal transfer and antibiotic selective pressure.


Subject(s)
Conjugation, Genetic , Gene Transfer, Horizontal , Plasmids , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , beta-Lactamases/genetics , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Gene Rearrangement , Humans , Mexico , Molecular Sequence Data , Recombination, Genetic , Salmonella Infections/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/isolation & purification , Sequence Analysis, DNA
10.
Plasmid ; 70(3): 362-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24016735

ABSTRACT

Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.


Subject(s)
Adenosine Triphosphatases/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Operon , Plasmids , Rhizobium etli/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Molecular Sequence Data , Mutation , Rhizobium etli/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transcription, Genetic
11.
Plasmid ; 69(1): 49-57, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22975386

ABSTRACT

The repABC replication/partitioning systems are commonly found in alpha-proteobacteria plasmids and in secondary chromosomes. All of the elements required for their replication and stable maintenance are encoded within a single transcription unit: the repABC operon. The repC gene encodes an initiator protein, while RepA, RepB and centromere-like sequence (parS) direct plasmid segregation. Strains containing two or more repABC plasmids are a common feature in some alpha proteobacteria groups, indicating that the repABC plasmid family embraces several incompatibility groups. Genes encoded within repABC operons are highly dynamic: each one possess its own distinctive phylogeny and homologous recombination events are common within these operons. Additionally, alpha-proteobacterial genomes contain repAB genes not associated with the ctRNA or with repC as well as plasmids whose replication depends on a ctRNA-repC module without the participation of repAB genes. Some alphaproteobacteria have repC genes clustered with other genes that are not involved in replication/partitioning functions. These atypical associations of genes could have an important role in the origin and diversification of new plasmids. Here we evaluated the functionality and possible evolutionary consequences of one of these atypical gene associations: the repAC genes present in the Rhizobium leguminosarum plasmid pRL7. The repAC genes are organized in an operon and they are capable of sustaining replication but in an unstable manner. RepC was essential for replication, and the origin of replication resides within its coding region. In contrast, RepA plays a minor role in the negative regulation of its own transcription.


Subject(s)
DNA Replication , Evolution, Molecular , Genes, Bacterial , Plasmids/genetics , Rhizobium leguminosarum/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genetic Vectors/genetics , Multigene Family , Operon , Phylogeny , RNA, Antisense/genetics , RNA, Bacterial/genetics , Replication Origin , Transcription, Genetic
12.
Pathogens ; 12(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839609

ABSTRACT

The CS21 pilus produced by enterotoxigenic Escherichia coli (ETEC) is involved in adherence to HT-29 intestinal cells. The CS21 pilus assembles proteins encoded by 14 genes clustered into the lng operon. AIM: This study aimed to determine whether E. coli BL21 (ECBL) transformed with the lng operon lacking the lngA gene (pE9034AΔlngA) and complemented in trans with lngA variants of ETEC clinical strains, as well as point substitutions, exhibited modified adherence to HT-29 cells. METHODS: A kanamycin cassette was used to replace the lngA gene in the lng operon of the E9034A strain, and the construct was transformed into the ECBL strain. The pJET1.2 vector carrying lngA genes with allelic variants was transformed into ECBLpE9034AΔlngA (ECBLΔlngA). The point substitutions were performed in the pJETlngAFMU073332 vector. RESULTS: Bioinformatic alignment analysis of the LngA proteins showed hypervariable regions and clustered the clinical ETEC strains into three groups. Variations in amino acid residues affect the adherence percentages of recombinant ECBL strains with lngA variants and site-specific mutations with HT-29 cells. CONCLUSION: In this study, ECBL carrying the lng operon harboring lngA variants of six clinical ETEC strains, as well as point substitutions, exerted an effect on the adherence of ECBL to HT-29 cells, thereby confirming the importance of the CS21 pilus in adherence.

13.
BMC Genomics ; 12: 493, 2011 Oct 08.
Article in English | MEDLINE | ID: mdl-21981907

ABSTRACT

BACKGROUND: Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. RESULTS: BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. CONCLUSIONS: BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time.


Subject(s)
Mycobacterium bovis/genetics , Tuberculosis/immunology , Genome, Bacterial , Humans , Molecular Sequence Data , Mycobacterium bovis/metabolism , Polymorphism, Single Nucleotide , Proteome/metabolism , Sequence Analysis, DNA , Tuberculosis/pathology
15.
BMC Microbiol ; 11: 158, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21718544

ABSTRACT

BACKGROUND: repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. RESULTS: To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. CONCLUSIONS: RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides within the repC gene and is located close to or inside of a large A+T region. RepC can act as an incompatibility factor, and the last 39 amino acid residues of the carboxy-terminal region of this protein are involved in promoting this phenotype.


Subject(s)
Bacterial Proteins/genetics , DNA Helicases/genetics , Plasmids , Replication Origin , Replicon , Rhizobium etli/genetics , Trans-Activators/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Operon , Sequence Analysis, DNA
16.
BMC Microbiol ; 11(1): 9, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21223599

ABSTRACT

BACKGROUND: Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. RESULTS: The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. CONCLUSIONS: The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the insertion and deletion of DNA stretches have shaped their evolutionary histories.


Subject(s)
Drug Resistance, Multiple/genetics , Plasmids/genetics , Salmonella typhimurium/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Blotting, Southern , Genotype , Polymerase Chain Reaction , Salmonella typhimurium/drug effects
17.
J Bacteriol ; 192(13): 3268-78, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20435728

ABSTRACT

Replication and segregation of the Rhizobium etli symbiotic plasmid (pRetCFN42d) depend on the presence of a repABC operon, which carries all the plasmid-encoded elements required for these functions. All repABC operons share three protein-encoding genes (repA, repB, and repC), an antisense RNA (ctRNA) coding gene, and at least one centromere-like region (parS). The products of repA and repB, in conjunction with the parS region, make up the segregation system, and they negatively regulate operon transcription. The last gene of the operon, repC, encodes the initiator protein. The ctRNA is a negative posttranscriptional regulator of repC. In this work, we analyzed the secondary structures of the ctRNA and its target and mapped the motifs involved in the complex formed between them. Essential residues for the effective interaction localize at the unpaired 5' end of the antisense molecule and the loop of the target mRNA. In light of our results, we propose a model explaining the mechanism of action of this ctRNA in the regulation of plasmid replication in R. etli.


Subject(s)
DNA Replication/genetics , RNA, Antisense/genetics , Rhizobium etli/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Blotting, Northern , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Operon/genetics , Plasmids/metabolism
18.
Mitochondrial DNA B Resour ; 5(3): 2339-2341, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-33457783

ABSTRACT

Bryophytes are the earliest plant group on Earth. They are a fundamental component of many ecosystems around the World. Some of their main roles are related to soil development, water retention, and biogeochemical cycling. Bryophytes include liverworts, hornworts, and mosses. The sequencing of chloroplast and mitochondria genomes has been useful to elucidate the taxonomy of this heterogeneous plant group. To date, despite their ecological importance only 41 mosses mitogenomes have been deposited in the GenBank. Here, the complete mitochondria genome sequence of Pseudocrossidium replicatum, a moss of the Pottiaceae family isolated in Tlaxcala, Mexico, is reported. The mitochondrial genome size of P. replicatum comprises 105,495 bp and contains the groups of genes described for other bryophytes mitogenomes. Our phylogenetic analysis shows that during the evolution of the mosses' mitogenome, nad7, rps4, rpl16, and rpl10 genes were lost independently in several lineages. The complete mitogenome sequence reported here would be a useful tool for our comprehension of the evolutionary and population genetics of this group of plants.

19.
Microb Drug Resist ; 26(3): 227-237, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31545121

ABSTRACT

Background: The use of antimicrobials and myeloablative chemotherapy regimens has promoted multiresistant microorganisms to emerge as nosocomial pathogens, such as vancomycin-resistant Enterococcus faecium (VREfm). We described a polyclonal outbreak of bloodstream infection caused by Efm in a hemato-oncological ward in Mexico. Our aim was to describe the clonal complex (CC) of the Efm strains isolated in the outbreak in comparison with commensal and environmental isolates. Methodology: Sixty Efm clinical, environmental, and commensal strains were included. We constructed a cladogram and a phylogenetic tree using Vitek and Multilocus sequence typing data, respectively. Results: We reported 20 new sequence types (ST), among which 17/43 clinical isolates belonged to CC17. The predominant ST in the clinical strains were ST757, ST1304, ST412, and ST770. Neither environmental nor commensal isolates belonged to CC17. The phylogeny of our collection shows that the majority of the clinical isolates were different from the environmental and commensal isolates, and only a small group of clinical isolates was closely related with environmental and commensal isolates. The cladogram revealed a similar segregation to that of the phylogeny. Conclusions: We found a high diversity among clinical, environmental, and commensal strains in a group of samples in a single hospital. Highest diversity was found between commensal and environmental isolates.


Subject(s)
Bacteremia/epidemiology , Cross Infection/epidemiology , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Phylogeny , Vancomycin-Resistant Enterococci/genetics , Adult , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/pathology , Bacterial Typing Techniques , Clone Cells , Cross Infection/drug therapy , Cross Infection/microbiology , Cross Infection/pathology , Enterococcus faecium/classification , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Female , Genetic Variation , Genotype , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/pathology , Hematologic Neoplasms/microbiology , Hematologic Neoplasms/pathology , Humans , Male , Mexico/epidemiology , Multilocus Sequence Typing , Phenotype , Symbiosis/physiology , Tertiary Care Centers , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification
20.
Front Microbiol ; 11: 1283, 2020.
Article in English | MEDLINE | ID: mdl-32625185

ABSTRACT

Acinetobacter baumannii is an emergent bacterial pathogen that provokes many types of infections in hospitals around the world. The genome of this organism consists of a chromosome and plasmids. These plasmids vary over a wide size range and many of them have been linked to the acquisition of antibiotic-resistance genes. Our bioinformatic analyses indicate that A. baumannii plasmids belong to a small number of plasmid lineages. The general structure of these lineages seems to be very stable and consists not only of genes involved in plasmid maintenance functions but of gene sets encoding poorly characterized proteins, not obviously linked to survival in the hospital setting, and opening the possibility that they improve the parasitic properties of plasmids. An analysis of genes involved in replication, suggests that members of the same plasmid lineage are part of the same plasmid incompatibility group. The same analysis showed the necessity of classifying the Rep proteins in ten new groups, under the scheme proposed by Bertini et al. (2010). Also, we show that some plasmid lineages have the potential capacity to replicate in many bacterial genera including those embracing human pathogen species, while others seem to replicate only within the limits of the Acinetobacter genus. Moreover, some plasmid lineages are widely distributed along the A. baumannii phylogenetic tree. Despite this, a number of them lack genes involved in conjugation or mobilization functions. Interestingly, only 34.6% of the plasmids analyzed here possess antibiotic resistance genes and most of them belong to fourteen plasmid lineages of the twenty one described here. Gene flux between plasmid lineages appears primarily limited to transposable elements, which sometimes carry antibiotic resistance genes. In most plasmid lineages transposable elements and antibiotic resistance genes are secondary acquisitions. Finally, broad host-range plasmids appear to have played a crucial role.

SELECTION OF CITATIONS
SEARCH DETAIL