Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Small ; 20(9): e2306819, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38152985

ABSTRACT

In surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.2 × 104 . The CuS substrate is readily synthesized by sulfurizing a Cu thin film at room temperature, exhibiting a Raman signal enhancement comparable to that of an Au noble metal substrate of similar thickness. Furthermore, computational simulations using the density functional theory are employed and time-resolved photoluminescence measurements are performed to investigate the enhancement mechanisms. The results indicate that polar covalent bonds (Cu─S) and strong interlayer interactions in the ultrathin CuS substrate increase the probability of charge transfer between the analyte molecules and the CuS surface, thereby producing enhanced SERS signals. The CuS SERS substrate demonstrates the selective detection of various dye molecules, including rhodamine 6G, methylene blue, and safranine O. Furthermore, the simplicity of CuS synthesis facilitates large-scale production of SERS substrates with high spatial uniformity, exhibiting a signal variation of less than 5% on a 4-inch wafer.

2.
Nano Lett ; 23(6): 2277-2286, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36913627

ABSTRACT

Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals.

3.
Nanotechnology ; 33(30)2022 May 06.
Article in English | MEDLINE | ID: mdl-35428034

ABSTRACT

MoS2crystals grown by chemical vapor deposition are suited for realization of practical 2D semiconductor-based electronics. In order to construct complementary circuits with n-type MoS2, another p-type semiconductor, whose performance can be adjusted corresponding to that of MoS2in the limited chip area, has to be sought. Herein, we present a method for tuning switching threshold voltages of complementary inverters simply via inkjet printing without changing their channel dimensions. Random networks of inkjet printed single-walled carbon nanotubes are formed as p-channels beside MoS2, and their density and thickness are controlled by varying the number of printed layers. As a result, p-type transistor characteristics as well as inverter characteristics are facilely tuned only by varying the number of printed layers.

4.
Nanotechnology ; 34(1)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36222531

ABSTRACT

Electronic devices composed of semiconducting two-dimensional (2D) materials and ultrathin 2D metallic electrode materials, accompanying synergistic interactions and extraordinary properties, are becoming highly promising for future flexible and transparent electronic and optoelectronic device applications. Unlike devices with bulk metal electrode and 2D channel materials, devices with ultrathin 2D electrode and 2D channel are susceptible to chemical reactions in both channel and electrode surface due to the high surface to volume ratio of the 2D structures. However, so far, the effect of doping was primary concerned on the channel component, and there is lack of understanding in terms of how to modulate electrical properties of devices by engineering electrical properties of both the metallic electrode and the semiconducting channel. Here, we propose the novel, one-pot doping of the field-effect transistor (FET) based on 2D molybdenum disulfide (MoS2) channel and ultrathin copper sulfide (CuS) electrodes under mild iodine gas environment at room temperature, which simultaneously modulates electrical properties of the 2D MoS2channel and 2D CuS electrode in a facile and cost-effective way. After one-pot iodine doping, effective p-type doping of the channel and electrode was observed, which was shown through decreased off current level, improvedIon/Ioffratio and subthreshold swing value. Our results open up possibility for effectively and conveniently modulating electrical properties of FETs made of various 2D semiconductors and ultrathin contact materials without causing any detrimental damage.

5.
Nano Lett ; 21(23): 9909-9915, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34843258

ABSTRACT

While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs.

6.
Small ; 16(2): e1905884, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31762207

ABSTRACT

To generate hydrogen, which is a clean energy carrier, a combination of electrolysis and renewable energy sources is desirable. In particular, for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in electrolysis, it is necessary to develop nonprecious, efficient, and durable catalysts. A robust nonprecious copper-iron (CuFe) bimetallic composite is reported that can be used as a highly efficient bifunctional catalyst for overall water splitting in an alkaline medium. The catalyst exhibits outstanding OER and HER activity, and very low OER and HER overpotentials (218 and 158 mV, respectively) are necessary to attain a current density of 10 mA cm-2 . When used in a two-electrode water electrolyzer system for overall water splitting, it not only achieves high durability (even at a very high current density of 100 mA cm-2 ) but also reduces the potential required to split water into oxygen and hydrogen at 10 mA cm-2 to 1.64 V for 100 h of continuous operation.

7.
Small ; 14(28): e1800742, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29882393

ABSTRACT

CuCo2 O4 films with different morphologies of either mesoporous nanosheets, cubic, compact-granular, or agglomerated embossing structures are fabricated via a hydrothermal growth technique using various solvents, and their bifunctional activities, electrochemical energy storage and oxygen evolution reaction (OER) for water splitting catalysis in strong alkaline KOH media, are investigated. It is observed that the solvents play an important role in setting the surface morphology and size of the crystallites by controlling nucleation and growth rate. An optimized mesoporous CuCo2 O4 nanosheet electrode shows a high specific capacitance of 1658 F g-1 at 1 A g-1 with excellent restoring capability of ≈99% at 2 A g-1 and superior energy density of 132.64 Wh kg-1 at a power density of 0.72 kW kg-1 . The CuCo2 O4 electrode also exhibits excellent endurance performance with capacity retention of 90% and coulombic efficiency of ≈99% after 5000 charge/discharge cycles. The best OER activity is obtained from the CuCo2 O4 nanosheet sample with the lowest overpotential of ≈290 mV at 20 mA cm-2 and a Tafel slope of 117 mV dec-1 . The superior bifunctional electrochemical activity of the mesoporous CuCo2 O4 nanosheet is a result of electrochemically favorable 2D morphology, which leads to the formation of a very large electrochemically active surface area.

8.
Small ; 14(49): e1703481, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30371003

ABSTRACT

The oxygen-evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer-by-layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2 . The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide-based nanohybrid materials with superior electrochemical activities.

9.
Nanotechnology ; 29(7): 075202, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29324436

ABSTRACT

We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs.

10.
Nano Lett ; 17(9): 5634-5640, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28832158

ABSTRACT

van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS2/WS2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS2 to MoS2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.

11.
Nanotechnology ; 25(20): 205201, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24784161

ABSTRACT

We successfully fabricated ferroelectric-gate field effect transistor (FEFET)-based nonvolatile memory devices using an n-type Si nanowire coated with omega-shaped-gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) via a low-temperature fabrication process. Our FEFET memory devices with controllable threshold voltage via adjustment of the doping concentration exhibit excellent memory characteristics with ultra-low ON state power dissipation (≤3 nW), a large modulation in channel conductance between the ON and OFF states exceeding 10(5), a long retention time of over 3 × 10(4) s and a high endurance of over 10(5) programming cycles whilst maintaining an I ON/I OFF ratio higher than 10(3). This result may be promising for next-generation nonvolatile memory on flexible substrate applications.

12.
Adv Sci (Weinh) ; : e2307196, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773725

ABSTRACT

The pursuit of sub-1-nm field-effect transistor (FET) channels within 3D semiconducting crystals faces challenges due to diminished gate electrostatics and increased charge carrier scattering. 2D semiconductors, exemplified by transition metal dichalcogenides, provide a promising alternative. However, the non-idealities, such as excess low-frequency noise (LFN) in 2D FETs, present substantial hurdles to their realization and commercialization. In this study, ideal LFN characteristics in monolayer MoS2 FETs are attained by engineering the metal-2D semiconductor contact and the subgap density of states (DOS). By probing non-ideal contact resistance effects using CuS and Au electrodes, it is uncovered that excess contact noise in the high drain current (ID) region can be substantially reduced by forming a van der Waals junction with CuS electrodes. Furthermore, thermal annealing effectively mitigates sulfur vacancy-induced subgap density of states (DOS), diminishing excess noise in the low ID region. Through meticulous optimization of metal-2D semiconductor contacts and subgap DOS, alignment of 1/f noise with the pure carrier number fluctuation model is achieved, ultimately achieving the sought-after ideal LFN behavior in monolayer MoS2 FETs. This study underscores the necessity of refining excess noise, heralding improved performance and reliability of 2D electronic devices.

13.
Nanotechnology ; 24(45): 455703, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24140605

ABSTRACT

We investigate strain-induced optical modulation in a ZnO microwire with wavy geometries induced by mechanical strains. Curved sections of the wavy ZnO microwire show red-/blue-shifts of near-band-edge emission and broadening of full width at half maximum in cathodoluminescence spectra along the length of the wavy ZnO microwire, compared with straight sections. The observed variations indicate that local strains in the wavy ZnO microwire lead to strain-dependent local changes of its energy band structure. The local bending curvature calculations using a geometric model also provide correlation between the shift of the near-band-edge emission peaks and the bending strain.

14.
Light Sci Appl ; 12(1): 280, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996413

ABSTRACT

Transition metal dichalcogenide (TMD) layered semiconductors possess immense potential in the design of photonic, electronic, optoelectronic, and sensor devices. However, the sub-bandgap light absorption of TMD in the range from near-infrared (NIR) to short-wavelength infrared (SWIR) is insufficient for applications beyond the bandgap limit. Herein, we report that the sub-bandgap photoresponse of MoS2/Au heterostructures can be robustly modulated by the electrode fabrication method employed. We observed up to 60% sub-bandgap absorption in the MoS2/Au heterostructure, which includes the hybridized interface, where the Au layer was applied via sputter deposition. The greatly enhanced absorption of sub-bandgap light is due to the planar cavity formed by MoS2 and Au; as such, the absorption spectrum can be tuned by altering the thickness of the MoS2 layer. Photocurrent in the SWIR wavelength range increases due to increased absorption, which means that broad wavelength detection from visible toward SWIR is possible. We also achieved rapid photoresponse (~150 µs) and high responsivity (17 mA W-1) at an excitation wavelength of 1550 nm. Our findings demonstrate a facile method for optical property modulation using metal electrode engineering and for realizing SWIR photodetection in wide-bandgap 2D materials.

15.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083532

ABSTRACT

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

16.
Nanotechnology ; 23(20): 205707, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22543728

ABSTRACT

We demonstrate that surface stresses in epitaxially grown VO2 nanowires (NWs) have a strong effect on the appearance and stability of intermediate insulating M2 phases, as well as the spatial distribution of insulating and metallic domains during structural phase transitions. During the transition from an insulating M1 phase to a metallic R phase, the coexistence of insulating M1 and M2 phases with the absence of a metallic R phase was observed at atmospheric pressure. In addition, we show that, for a VO2 NW without the presence of an epitaxial interface, surface stresses dominantly lead to spatially inhomogeneous phase transitions between insulating and metallic phases. In contrast, for a VO2 NW with the presence of an epitaxial interface, the strong epitaxial interface interaction leads to additional stresses resulting in uniformly alternating insulating and metallic domains along the NW length.


Subject(s)
Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Vanadium Compounds/chemistry , Computer Simulation , Electric Conductivity , Materials Testing , Molecular Conformation , Particle Size , Phase Transition , Stress, Mechanical , Surface Properties
17.
Nano Lett ; 11(12): 5142-7, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22107106

ABSTRACT

Piezomaterials are known to display enhanced energy conversion efficiency at nanoscale due to geometrical effect and improved mechanical properties. Although piezoelectric nanowires have been the most widely and dominantly researched structure for this application, there only exist a limited number of piezomaterials that can be easily manufactured into nanowires, thus, developing effective and reliable means of preparing nanostructures from a wide variety of piezomaterials is essential for the advancement of self-powered nanotechnology. In this study, we present nanoporous arrays of polyvinylidene fluoride (PVDF), fabricated by a lithography-free, template-assisted preparation method, as an effective alternative to nanowires for robust piezoelectric nanogenerators. We further demonstrate that our porous PVDF nanogenerators produce the rectified power density of 0.17 mW/cm3 with the piezoelectric potential and the piezoelectric current enhanced to be 5.2 times and 6 times those from bulk PVDF film nanogenerators under the same sonic-input.

18.
ACS Appl Mater Interfaces ; 14(11): 13499-13506, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274921

ABSTRACT

Electronic devices in highly integrated and miniaturized systems demand electromagnetic interference shielding within nanoscale dimensions. Although several ultrathin materials have been proposed, satisfying various requirements such as ultrathin thickness, optical transparency, flexibility, and proper shielding efficiency remains a challenge. Herein, we report an ultrahigh electromagnetic interference (EMI) SSE/t value (>106 dB cm2/g) using a conductive CuS nanosheet with thickness less than 20 nm, which was synthesized at room temperature. We found that the EMI shielding efficiency (EMI SE) of the CuS nanosheet exceeds that of the traditional Cu film in the nanoscale thickness, which is due to high conductivity and the presence of internal dipole structures of the CuS nanosheet that contribute to absorption due to the damping of dipole oscillation. In addition, the CuS nanosheet exhibited high mechanical stability (104 cycles at 3 mm bending radius) and air stability (25 °C, 1 atm), which far exceeded the performance of the Cu nanosheet film. This remarkable performance of nanometer-thick CuS proposes an important pathway toward designing EMI shielding materials for wearable, flexible, and next-generation electronic applications.

19.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35145096

ABSTRACT

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

20.
ACS Appl Mater Interfaces ; 13(3): 4244-4252, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33448802

ABSTRACT

The development of highly conductive electrodes with robust mechanical durability and clear transmittance in the visible to IR spectral range is of great importance for future wearable/flexible electronic applications. In particular, low resistivity, robust flexibility, and wide spectral transparency have a significant impact on optoelectronic performance. Herein, we introduce a new class of covellite copper monosulfide (CuS) nanosheet films as a promising candidate for soft transparent conductive electrodes (TCEs). An atmospheric sulfur adsorption-corrosion phenomenon represents a key approach in our work for the achievement of wafer-scale CuS nanosheet films through systematic control of the neat Cu layer thickness ranging from 2 to 10 nm multilayers at room temperature. These nanosheet films provide outstanding conductivity (∼25 Ω sq-1) and high transparency (> 80%) in the visible to infrared region as well as distinct flexibility and long stability under air exposure, yielding a high figure-of-merit (∼60) that is comparable to that of conventional rigid metal oxide material-based TCEs. Our unique room temperature synthesis process delivers high quality CuS nanosheets on any arbitrary substrates in a short time (< 1 min) scale, thus guaranteeing the widespread use of highly producible and scalable device fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL