Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Data Brief ; 11: 510-516, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28337468

ABSTRACT

SF1 and SF2 helicases are important molecular motors that use the energy of ATP to unwind nucleic acids or nucleic-acid protein complexes. They are ubiquitous enzymes and found in almost all organisms sequenced to date. This article provides a comparative analysis for SF1 and SF2 helicase families from three domains of life archaea, human, bacteria. Seven families are conserved in these three representatives and includes Upf1-like, UvrD-like, Rad3-like, DEAD-box, RecQ-like. Snf2 and Ski2-like. The data highlight conservation of the helicase core motifs for each of these families. Phylogenetic analysis presented on certain protein families are essential for further studies tracing the evolutionary history of helicase families. The data supplied in this article support publication "Genome-wide identification of SF1 and SF2 helicases from archaea" (Chamieh et al., 2016) [1].

2.
Comput Biol Med ; 80: 185-189, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27984824

ABSTRACT

PURPOSE: Superfamily 1 and Superfamily 2 helicases, two of the largest helicase protein families, play vital roles in many biological processes including replication, transcription and translation. Study of helicase proteins in the model microorganisms of archaea have largely contributed to the understanding of their function, architecture and assembly. Based on a large phylogenomics approach, we have identified and classified all SF1 and SF2 protein families in ninety five sequenced archaea genomes. Here we developed an online webserver linked to a specialized protein database named ARCPHdb to provide access for SF1 and SF2 helicase families from archaea. METHODS: ARCPHdb was implemented using MySQL relational database. Web interfaces were developed using Netbeans. Data were stored according to UniProt accession numbers, NCBI Ref Seq ID, PDB IDs and Entrez Databases. RESULTS: A user-friendly interactive web interface has been developed to browse, search and download archaeal helicase protein sequences, their available 3D structure models, and related documentation available in the literature provided by ARCPHdb. The database provides direct links to matching external databases. CONCLUSIONS: The ARCPHdb is the first online database to compile all protein information on SF1 and SF2 helicase from archaea in one platform. This database provides essential resource information for all researchers interested in the field.


Subject(s)
Archaeal Proteins , Computational Biology , Databases, Protein , RNA Helicases , Archaea , Database Management Systems , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL