Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Gastroenterology ; 157(3): 823-837, 2019 09.
Article in English | MEDLINE | ID: mdl-31078621

ABSTRACT

BACKGROUND & AIMS: Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. METHODS: We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. RESULTS: Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. CONCLUSIONS: In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer.


Subject(s)
Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carcinoma, Pancreatic Ductal/enzymology , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment , Animals , Antigens, Neoplasm/genetics , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Glycolysis/drug effects , Humans , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenotype , Phenylurea Compounds/pharmacology , Signal Transduction , Sulfonamides/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
2.
Nature ; 488(7412): 499-503, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22801503

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Genetic Predisposition to Disease/genetics , Mutant Proteins/metabolism , Mutation/genetics , Profilins/genetics , Profilins/metabolism , Actins/metabolism , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Axons/pathology , Cells, Cultured , Exome/genetics , Female , Growth Cones/metabolism , High-Throughput Nucleotide Sequencing , Humans , Jews/genetics , Male , Mice , Models, Molecular , Molecular Sequence Data , Motor Neurons/cytology , Motor Neurons/metabolism , Mutant Proteins/genetics , Pedigree , Protein Conformation , Ubiquitination , White People/genetics
3.
Clin Cancer Res ; 30(3): 554-563, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37787999

ABSTRACT

PURPOSE: Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN: Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS: Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS: In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.


Subject(s)
Brain Neoplasms , Receptors, Chimeric Antigen , Humans , Xenograft Model Antitumor Assays , Neoplasm Recurrence, Local/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , T-Lymphocytes , Cell Line, Tumor , AC133 Antigen/metabolism
4.
Cancer Metab ; 12(1): 28, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363341

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors. METHODS: Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and 13C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs. RESULTS: Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the 13C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers. CONCLUSIONS: Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.

5.
Cell Rep Med ; 5(10): 101755, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39366383

ABSTRACT

Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.


Subject(s)
Brain Neoplasms , Guanosine Triphosphate , IMP Dehydrogenase , Humans , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Animals , Guanosine Triphosphate/metabolism , Cell Line, Tumor , Mice , Cell Proliferation , Female
6.
Nat Med ; 30(10): 2936-2946, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39095594

ABSTRACT

Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Receptors, Immunologic , Roundabout Proteins , Animals , Female , Humans , Mice , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Cell Line, Tumor , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/immunology , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Roundabout Proteins/antagonists & inhibitors , Signal Transduction , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 22(10): 1228-1242, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37348875

ABSTRACT

The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.


Subject(s)
Carbonic Anhydrases , Ferroptosis , Humans , Carbonic Anhydrase IX/metabolism , Glutamine , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Antigens, Neoplasm/metabolism , Hypoxia , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/genetics
8.
Cancers (Basel) ; 14(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35884358

ABSTRACT

Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.

9.
Mol Cancer Res ; 20(3): 434-445, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34876482

ABSTRACT

Invasion of neighboring extracellular matrix (ECM) by malignant tumor cells is a hallmark of metastatic progression. This invasion can be mediated by subcellular structures known as invadopodia, the function of which depends upon soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated vesicular transport of cellular cargo. Recently, it has been shown the SNARE Syntaxin4 (Stx4) mediates trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) to invadopodia, and that Stx4 is regulated by Munc18c in this context. Here, it is observed that expression of a construct derived from the N-terminus of Stx4, which interferes with Stx4-Munc18c interaction, leads to perturbed trafficking of MT1-MMP, and reduced invadopodium-based invasion in vitro, in models of triple-negative breast cancer (TNBC). Expression of Stx4 N-terminus also led to increased survival and markedly reduced metastatic burden in multiple TNBC models in vivo. The findings are the first demonstration that disrupting Stx4-Munc18c interaction can dramatically alter metastatic progression in vivo, and suggest that this interaction warrants further investigation as a potential therapeutic target. IMPLICATIONS: Disrupting the interaction of Syntaxin4 and Munc18c may be a useful approach to perturb trafficking of MT1-MMP and reduce metastatic potential of breast cancers.


Subject(s)
Breast Neoplasms , Podosomes , Triple Negative Breast Neoplasms , Breast Neoplasms/pathology , Cell Line, Tumor , Extracellular Matrix/metabolism , Female , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Neoplasm Invasiveness/pathology , Podosomes/metabolism , SNARE Proteins/metabolism , Triple Negative Breast Neoplasms/pathology
10.
Front Immunol ; 13: 905768, 2022.
Article in English | MEDLINE | ID: mdl-35874663

ABSTRACT

Glioblastomas (GBM), the most common malignant primary adult brain tumors, are uniformly lethal and are in need of improved therapeutic modalities. GBM contain extensive regions of hypoxia and are enriched in therapy resistant brain tumor-initiating cells (BTICs). Carbonic anhydrase 9 (CA9) is a hypoxia-induced cell surface enzyme that plays an important role in maintenance of stem cell survival and therapeutic resistance. Here we demonstrate that CA9 is highly expressed in patient-derived BTICs. CA9+ GBM BTICs showed increased self-renewal and proliferative capacity. To target CA9, we developed dual antigen T cell engagers (DATEs) that were exquisitely specific for CA9-positive patient-derived clear cell Renal Cell Carcinoma (ccRCC) and GBM cells. Combined treatment of either ccRCC or GBM cells with the CA9 DATE and T cells resulted in T cell activation, increased release of pro-inflammatory cytokines and enhanced cytotoxicity in a CA9-dependent manner. Treatment of ccRCC and GBM patient-derived xenografts markedly reduced tumor burden and extended survival. These data suggest that the CA9 DATE could provide a novel therapeutic strategy for patients with solid tumors expressing CA9 to overcome treatment resistance. .


Subject(s)
Brain Neoplasms , Carbonic Anhydrases , Carcinoma, Renal Cell , Glioblastoma , Kidney Neoplasms , Adult , Antigens, Neoplasm/therapeutic use , Brain Neoplasms/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/therapeutic use , Carcinoma, Renal Cell/therapy , Glioblastoma/therapy , Humans , Hypoxia , Immunotherapy , Kidney Neoplasms/therapy , T-Lymphocytes/metabolism
11.
Cancer Cell ; 40(12): 1488-1502.e7, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36368321

ABSTRACT

MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Dihydroorotate Dehydrogenase , Cell Line, Tumor , Neoplasm Recurrence, Local , Pyrimidines/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism
12.
Cancers (Basel) ; 13(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804486

ABSTRACT

PURPOSE: Granulocyte colony-stimulating factor (G-CSF) and hypoxia modulate the tumour immune microenvironment. In model systems, hypoxia-induced carbonic anhydrase IX (CAIX) has been associated with G-CSF and immune responses, including M2 polarization of macrophages. We investigated whether these associations exist in human breast cancer specimens, their relation to breast cancer subtypes, and clinical outcome. METHODS: Using validated protocols and prespecified scoring methodology, G-CSF expression on carcinoma cells and CD163 expression on tumour-associated macrophages were assayed by immunohistochemistry and applied to a tissue microarray series of 2960 primary excision specimens linked to clinicopathologic, biomarker, and outcome data. RESULTS: G-CSFhigh expression showed a significant positive association with ER negativity, HER2 positivity, presence of CD163+ M2 macrophages, and CAIX expression. In univariate analysis, G-CSFhigh phenotype was associated with improved survival in non-luminal cases, although the CAIX+ subset had a significantly adverse prognosis. A significant positive association was observed between immune checkpoint biomarkers on tumour-infiltrating lymphocytes and both G-CSF- and CAIX-expressing carcinoma cells. Immune checkpoint biomarkers correlated significantly with favourable prognosis in G-CSFhigh/non-luminal cases independent of standard clinicopathological features. CONCLUSIONS: The prognostic associations linking G-CSF to immune biomarkers and CAIX strongly support their immunomodulatory roles in the tumour microenvironment.

13.
Sci Adv ; 7(35)2021 08.
Article in English | MEDLINE | ID: mdl-34452919

ABSTRACT

The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.


Subject(s)
Bicarbonates , Neoplasms , Carbon-Sulfur Lyases , Carbonic Anhydrase IX , Cell Hypoxia , Cell Line, Tumor , Humans , Hypoxia , Iron , Neoplasms/genetics
14.
MAbs ; 13(1): 1997072, 2021.
Article in English | MEDLINE | ID: mdl-34812124

ABSTRACT

Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.


Subject(s)
Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Antibodies, Monoclonal/chemistry , Catalytic Domain , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Epitope Mapping/methods , Humans
15.
MAbs ; 13(1): 1999194, 2021.
Article in English | MEDLINE | ID: mdl-34806527

ABSTRACT

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Subject(s)
Antineoplastic Agents, Immunological , Carbonic Anhydrases , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm , Biomarkers, Tumor , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration
16.
Cell Rep Med ; 1(8): 100131, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33294856

ABSTRACT

Activating KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs), yet KRAS has remained a difficult target to inhibit pharmacologically. Here, we demonstrate, using several human and mouse models of PDACs, rapid acquisition of tumor resistance in response to targeting KRAS or MEK, associated with integrin-linked kinase (ILK)-mediated increased phosphorylation of the mTORC2 component Rictor, and AKT. Although inhibition of mTORC1/2 results in a compensatory increase in ERK phosphorylation, combinatorial treatment of PDAC cells with either KRAS (G12C) or MEK inhibitors, together with mTORC1/2 inhibitors, results in synergistic cytotoxicity and cell death reflected by inhibition of pERK and pRictor/pAKT and of downstream regulators of protein synthesis and cell survival. Relative to single agents alone, this combination leads to durable inhibition of tumor growth and metastatic progression in vivo and increased survival. We have identified an effective combinatorial treatment strategy using clinically viable inhibitors, which can be applied to PDAC tumors with different KRAS mutations.


Subject(s)
MAP Kinase Signaling System/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mutation/drug effects , Mutation/genetics , Pancreatic Ducts/drug effects , Pancreatic Neoplasms/drug therapy , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Pancreatic Neoplasms
17.
Cell Stem Cell ; 27(1): 110-124.e9, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32413332

ABSTRACT

Patients with chronic myeloid leukemia (CML) often require lifelong therapy with ABL1 tyrosine kinase inhibitors (TKIs) due to a persisting TKI-resistant population of leukemic stem cells (LSCs). From transcriptome profiling, we show integrin-linked kinase (ILK), a key constituent of focal adhesions, is highly expressed in TKI-nonresponsive patient cells and their LSCs. Genetic and pharmacological inhibition of ILK impaired the survival of nonresponder patient cells, sensitizing them to TKIs, even in the presence of protective niche cells. Furthermore, ILK inhibition eliminated TKI-refractory LSCs from patients, but not normal HSCs, in vitro and in vivo. RNA-sequencing and functional validation studies implicated an important role of ILK in maintaining a requisite level of mitochondrial oxidative metabolism in highly purified, quiescent LSCs. Thus, these findings point to ILK as a critical survival mediator to TKIs and quiescent stem cells, offering an attractive therapeutic target and model for curative combination therapies in stem-cell-driven cancers.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Drug Resistance, Neoplasm , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases
18.
Cancer Immunol Res ; 7(7): 1064-1078, 2019 07.
Article in English | MEDLINE | ID: mdl-31088846

ABSTRACT

Treatment strategies involving immune-checkpoint blockade (ICB) have significantly improved survival for a subset of patients across a broad spectrum of advanced solid cancers. Despite this, considerable room for improving response rates remains. The tumor microenvironment (TME) is a hurdle to immune function, as the altered metabolism-related acidic microenvironment of solid tumors decreases immune activity. Here, we determined that expression of the hypoxia-induced, cell-surface pH regulatory enzyme carbonic anhydrase IX (CAIX) is associated with worse overall survival in a cohort of 449 patients with melanoma. We found that targeting CAIX with the small-molecule SLC-0111 reduced glycolytic metabolism of tumor cells and extracellular acidification, resulting in increased immune cell killing. SLC-0111 treatment in combination with immune-checkpoint inhibitors led to the sensitization of tumors to ICB, which led to an enhanced Th1 response, decreased tumor growth, and reduced metastasis. We identified that increased expression of CA9 is associated with a reduced Th1 response in metastatic melanoma and basal-like breast cancer TCGA cohorts. These data suggest that targeting CAIX in the TME in combination with ICB is a potential therapeutic strategy for enhancing response and survival in patients with hypoxic solid malignancies.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/drug therapy , Carbonic Anhydrases/chemistry , Hypoxia/physiopathology , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Phenylurea Compounds/pharmacology , Sulfonamides/pharmacology , Animals , Apoptosis , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , CTLA-4 Antigen/antagonists & inhibitors , Carbonic Anhydrases/metabolism , Cell Proliferation , Drug Therapy, Combination , Enzyme Induction , Female , Gene Expression Regulation, Enzymologic , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/secondary , Melanoma/enzymology , Melanoma/pathology , Mice , Mice, Inbred C57BL , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Survival Rate , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
19.
Front Cell Dev Biol ; 4: 27, 2016.
Article in English | MEDLINE | ID: mdl-27066484

ABSTRACT

Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with aggressive cancer.

20.
Oncoimmunology ; 4(12): e1048955, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587316

ABSTRACT

Primary tumor-associated hypoxia stimulates the production of secreted factors that mobilize bone marrow-derived cells, including immunomodulatory myeloid-derived suppressor cells (MDSCs) to pre-metastatic niches. We recently found that the hypoxia-induced enzyme carbonic anhydrase IX (CAIX) promotes metastasis by stimulating the G-CSF dependent mobilization of granulocytic MDSCs to the lung pre-metastatic niche.

SELECTION OF CITATIONS
SEARCH DETAIL