Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 15(10): 6626-33, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26393281

ABSTRACT

Several proposed beyond-CMOS devices based on two-dimensional (2D) heterostructures require the deposition of thin dielectrics between 2D layers. However, the direct deposition of dielectrics on 2D materials is challenging due to their inert surface chemistry. To deposit high-quality, thin dielectrics on 2D materials, a flat lying titanyl phthalocyanine (TiOPc) monolayer, deposited via the molecular beam epitaxy, was employed to create a seed layer for atomic layer deposition (ALD) on 2D materials, and the initial stage of growth was probed using in situ STM. ALD pulses of trimethyl aluminum (TMA) and H2O resulted in the uniform deposition of AlOx on the TiOPc/HOPG. The uniformity of the dielectric is consistent with DFT calculations showing multiple reaction sites are available on the TiOPc molecule for reaction with TMA. Capacitors prepared with 50 cycles of AlOx on TiOPc/graphene display a capacitance greater than 1000 nF/cm(2), and dual-gated devices have current densities of 10(-7)A/cm(2) with 40 cycles.

2.
J Am Chem Soc ; 135(39): 14600-9, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23968338

ABSTRACT

Ambient NO2 adsorption onto copper(II) phthalocyanine (CuPc) monolayers is observed using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) to elucidate the molecular sensing mechanism in CuPc chemical vapor sensors. For low doses (1 ppm for 5 min) of NO2 at ambient temperatures, isolated chemisorption sites on the CuPc metal centers are observed in STM images. These chemisorbates almost completely desorb from the CuPc monolayer after annealing at 100 °C for 30 min. Conversely, for high NO2 doses (10 ppm for 5 min), the NO2 induces a fracture of the CuPc domains. This domain fracture can only be reversed by annealing above 150 °C, which is consistent with dissociative chemisorption into NO and atomic O accompanied by surface restructuring. This high stability implies that the domain fracture results from tightly bound adsorbates, such as atomic O. Existence of atomic O on or under the CuPc layer, which results in domain fracture, is revealed by XPS analysis and ozone-dosing experiments. The observed CuPc domain fracturing is consistent with a mechanism for the dosimetric sensing of NO2 and other reactive gases by CuPc organic thin film transistors (OTFTs).

3.
ACS Nano ; 9(5): 4843-9, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25844578

ABSTRACT

Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL