Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Pharmacol Drug Dev ; 11(4): 535-550, 2022 04.
Article in English | MEDLINE | ID: mdl-34633154

ABSTRACT

The nanoemulsion-based 10% aminolevulinic acid (ALA) hydrochloride gel BF-200 ALA optimizes epidermal penetration of its active ingredient and is approved for topical photodynamic therapy (PDT) for the treatment of actinic keratosis in the United States and Europe. To characterize systemic absorption from dermal application during PDT, ALA and its key active metabolite protoporphyrin IX (PpIX) were analyzed in 2 maximal usage pharmacokinetic trials (MUsT) in patients severely affected with actinic keratosis. The primary objective of both MUsTs was to assess baseline-adjusted plasma concentration-time curves for ALA and PpIX after a single PDT treatment applying either 2 g (1 tube) of BF-200 ALA on the face (MUsT-1) or applying 6 g (3 tubes) of BF-200 ALA on the face/scalp or body periphery (MUsT-2), to 20 or 60 cm2 , respectively. All PDTs were performed using red light at around 635 nm wavelength. Safety and tolerability were documented along with pharmacokinetics. In both MUsTs, ALA plasma concentrations were transiently increased to a maximum concentration at about 2.5 to 3.3 times above endogenous baseline with time to maximum concentration at ≈3 hours after dosing. Plasma levels subsequently returned to baseline within 10 hours after dosing. Overall baseline-adjusted mean area under the baseline-adjusted plasma concentration-time curve from time zero to the last sampling time point at which the concentration was at or above the lower limit of quantification ranged from 142.8 to 146.2, indicating that a similar, minor fraction of topical ALA is systemically absorbed under both dosing regimens. Systemic PpIX exposure after administration of either dose of BF-200 ALA was equally minimal. Application site skin reactions were treatment area size-related, albeit transient and consistent with the known safety profile of BF-200 ALA.


Subject(s)
Keratosis, Actinic , Photochemotherapy , Aminolevulinic Acid/adverse effects , Aminolevulinic Acid/analogs & derivatives , Humans , Keratosis, Actinic/drug therapy , Photochemotherapy/adverse effects , Photochemotherapy/methods , Photosensitizing Agents/adverse effects , Photosensitizing Agents/pharmacokinetics
2.
Bioorg Med Chem Lett ; 21(10): 3066-9, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21463944

ABSTRACT

We herein report the synthesis, biological activity and structure activity relationship of derivatives of benzylstyrylsulfone, benzylstyrylsulfine and benzylsulfonyl-N-phenylacetamide. A lead compound 7 represents a new class of mitotic inhibitors that demonstrates potent anti-proliferative activity and selectively induces cancer cell apoptosis while sparing non-transformed lung fibroblast.


Subject(s)
Antimitotic Agents/chemical synthesis , Antimitotic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Styrenes/chemistry , Antimitotic Agents/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Humans , Structure-Activity Relationship , Sulfinic Acids/chemistry
3.
Protein Pept Lett ; 24(3): 253-266, 2017.
Article in English | MEDLINE | ID: mdl-27964701

ABSTRACT

Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics.


Subject(s)
Peptides/analysis , Proteins/analysis , Proteomics/methods , Spectrophotometry, Atomic/methods , Amino Acid Sequence , Chelating Agents/chemistry , Humans , Isotope Labeling/methods , Peptides/chemistry , Phosphorus/chemistry , Phosphorylation , Proteins/chemistry , Proteomics/instrumentation , Selenium/chemistry , Spectrophotometry, Atomic/instrumentation , Staining and Labeling/methods , Sulfur/chemistry
4.
Sci Rep ; 7: 42850, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198449

ABSTRACT

Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens.


Subject(s)
Cation Transport Proteins/metabolism , Escherichia coli/growth & development , Hydrogen/metabolism , Iron/metabolism , Plasmodium falciparum/metabolism , Cation Transport Proteins/genetics , Cloning, Molecular , Escherichia coli/drug effects , Escherichia coli/genetics , Genes, Synthetic , Humans , Iron/pharmacology , Malaria, Falciparum/parasitology , Microbial Viability , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism , Vacuoles/metabolism
5.
J Pharm Biomed Anal ; 145: 84-90, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28654780

ABSTRACT

The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial.


Subject(s)
Mass Spectrometry , Drug Contamination , Excipients , Mercury , Metals , Pharmaceutical Preparations , Spectrum Analysis
6.
J Pharm Biomed Anal ; 113: 2-20, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-25956803

ABSTRACT

Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons.


Subject(s)
Isotope Labeling/methods , Proteomics/methods , Animals , Humans , Mass Spectrometry/methods , Membrane Proteins/analysis , Membrane Proteins/metabolism
7.
J Med Chem ; 57(6): 2275-91, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24471873

ABSTRACT

ON01910.Na is a highly effective anticancer agent that induces mitotic arrest and apoptosis. Clinical studies with ON01910 in cancer patients have shown efficacy along with an impressive safety profile. While ON01910 is highly active against cancer cells, it has a low oral availability and requires continuous intravenous infusion or multiple gram doses to ensure sufficient drug exposure for biological activity in patients. We have identified two novel series of styrylsulfonyl-methylpyridines. Lead compounds 8, 9a, 18 and 19a are highly potent mitotic inhibitors and selectively cytotoxic to cancer cells. Impressively, these compounds possess excellent pharmaceutical properties and two lead drug candidates 9a and 18 demonstrated antitumor activities in animal models.


Subject(s)
Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Glycine/analogs & derivatives , Styrenes/chemical synthesis , Styrenes/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Sulfones/pharmacology , Animals , Annexin A5 , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Area Under Curve , Biological Availability , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Drug Discovery , Glycine/pharmacology , Half-Life , Indicators and Reagents , Kaplan-Meier Estimate , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Microsomes, Liver/metabolism , Models, Molecular , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL