Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Publication year range
1.
Cancer Sci ; 113(2): 796-801, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34812554

ABSTRACT

Identifying molecular features is an essential component of the management and targeted therapy of brain metastases (BMs). The molecular features are different between primary lung cancers and BMs of lung cancer. Here we report the DNA and RNA mutational profiles of 43 pathological samples of BMs. In addition to previously reported mutational events associated with targeted therapy, PTPRZ1-MET, which was previously exclusively identified in glioma, was present in two cases of BMs of lung cancer. Furthermore, MET exon 14 skipping may be more common (6/37 cases) in BMs of lung cancer than the frequency previously reported in lung cancer. These findings highlight the clinical significance of targeted DNA plus RNA sequencing for BMs and suggest PTPRZ1-MET and MET exon 14 skipping as critical molecular events that may serve as targets of targeted therapy in BMs.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/secondary , Oncogene Fusion , Proto-Oncogene Proteins c-met/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Adult , Aged , Brain Neoplasms/metabolism , Exons , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
2.
J Pathol ; 251(3): 272-283, 2020 07.
Article in English | MEDLINE | ID: mdl-32418210

ABSTRACT

Isocitrate dehydrogenase (IDH) wild-type diffuse lower-grade glioma (LGG) is usually associated with poor outcome, but there have been disputes over its clinical outcome and classification. We present here a robust gene expression-based molecular classification of IDH wild-type diffuse LGG into two subtypes with distinct biological and clinical features. A discovery cohort of 49 IDH wild-type diffuse LGGs from the Chinese Glioma Genome Atlas (CGGA) was subjected to clustering and function analysis. Seventy-three tumors from The Cancer Genome Atlas (TCGA) were used to validate our findings. Consensus clustering of transcriptional data uncovered concordant classification of two robust and prognostically significant subtypes of IDH wild-type LGG. Subtype 1, associated with poorer outcomes, was characterized by significantly higher immune and cytolytic scores, M2 macrophages, and up-regulation of immune exhaustion markers, while Subtype 2, which had elevated lymphocytes and plasma cells, showed relatively favorable survival. Somatic alteration analysis revealed that Subtype 1 showed more frequently deleted regions, such as the locus of CDKN2A/CDKN2B, DMRTA1, C9orf53, and MTAP. Furthermore, we developed and validated a five-gene signature for better application of this acquired stratification. Our data demonstrate the biological and prognostic heterogeneity within IDH wild-type diffuse LGGs and deepen our molecular understandi-g of this tumor entity. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Transcriptome , Brain Neoplasms/classification , Brain Neoplasms/enzymology , Brain Neoplasms/immunology , Cluster Analysis , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Glioma/classification , Glioma/enzymology , Glioma/immunology , Humans , Male , Neoplasm Grading , Phenotype , Predictive Value of Tests , Reproducibility of Results
3.
Eur Spine J ; 30(10): 2857-2866, 2021 10.
Article in English | MEDLINE | ID: mdl-33495960

ABSTRACT

PURPOSE: Due to the rarity of diffuse spinal cord astrocytoma, an effective model is still lacking to stratify their prognosis. Here, we aimed to establish a prognostic model through comprehensively evaluating clinicopathological features and preoperative peripheral blood inflammatory markers in 89 cases. METHODS: We performed univariate and multivariate Cox regression to identify prognosis factors. The Kaplan-Meier curves and ROC curves were employed to compare the prognostic value of selected factors. RESULTS: In addition to clinicopathological factors, we revealed the preoperative peripheral blood leukocyte count, neutrophils-to-lymphocytes ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were also significantly correlated with overall survival of spinal cord astrocytoma in univariate Cox regression, and NLR was still significant in multivariate Cox analysis. Further, we demonstrated that NLR ≤ 3.65 and preoperative McCormick score (MMS) ≤ 3 were independently correlated with better survival of WHO grade IV tumors. Meanwhile, Ki-67 < 10% and resection extent ≥ 90% were independent prognostic factors in WHO grade II/III tumors. Finally, we developed a prognostic model that had better predictive efficiencies than WHO grade and histological grade for 1-year (AUC = 76.6), 2- year (AUC = 80.9), and 3-year (AUC = 80.3) survival. This model could classify tumors into 4 classifications with increasingly poor prognosis: 1, WHO grade II/III, with Ki-67 < 10% and resection extent ≥ 90%; 2, WHO grade II/III, Ki-67 ≥ 10% or resection < 90%; 3, WHO grade IV, NLR ≤ 3.65 and MMS ≤ 3; 4, WHO grade IV, with NRL > 3.65 or MMS = 4. CONCLUSION: We successfully constructed a comprehensive prognostic model including preoperative peripheral blood inflammatory markers, which can stratify diffuse spinal cord astrocytoma into 4 subgroups.


Subject(s)
Astrocytoma , Lymphocytes , Astrocytoma/surgery , Humans , Prognosis , Retrospective Studies , Spinal Cord
4.
J Cell Mol Med ; 24(22): 13171-13180, 2020 11.
Article in English | MEDLINE | ID: mdl-33006444

ABSTRACT

Alternative splicing (AS) is assumed to play important roles in the progression and prognosis of cancer. Currently, the comprehensive analysis and clinical relevance of AS in lower-grade diffuse gliomas have not been systematically addressed. Here, we gathered alternative splicing data of lower-grade diffuse gliomas from SpliceSeq. Based on the Percent Spliced In (PSI) values of 515 lower-grade diffuse glioma patients from the Cancer Genome Atlas (TCGA), we performed subtype-differential AS analysis and consensus clustering to determine robust clusters of patients. A total of 48 050 AS events in 10 787 genes in lower-grade diffuse gliomas were profiled. Subtype-differential splicing analysis and functional annotation revealed that spliced genes were significantly enriched in numerous cancer-related biological phenotypes and signalling pathways. Consensus clustering using AS events identified three robust clusters of patients with distinguished pathological and prognostic features. Moreover, each cluster was also associated with distinct genomic alterations. Finally, we developed and validated an AS-related signature with Cox proportional hazards model. The signature, significantly associated with clinical and molecular features, could serve as an independent prognostic factor for lower-grade diffuse gliomas. Thus, our results indicated that AS events could discriminate molecular subtypes and have prognostic impact in lower-grade diffuse gliomas.


Subject(s)
Alternative Splicing , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Glioma/diagnosis , Glioma/genetics , Biomarkers, Tumor/genetics , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Mutation , Prognosis , Proportional Hazards Models , Sequence Analysis, RNA , Signal Transduction
5.
Carcinogenesis ; 40(7): 853-860, 2019 07 20.
Article in English | MEDLINE | ID: mdl-30877769

ABSTRACT

Isocitrate dehydrogenase (IDH) mutant glioblastoma (GBM), accounts for ~10% GBMs, arises from lower grade diffuse glioma and preferentially appears in younger patients. Here, we aim to establish a robust gene expression-based molecular classification of IDH-mutant GBM. A total of 33 samples from the Chinese Glioma Genome Atlas RNA-sequencing data were selected as training set, and 21 cases from Chinese Glioma Genome Atlas microarray data were used as validation set. Consensus clustering identified three groups with distinguished prognostic and molecular features. G1 group, with a poorer clinical outcome, mainly contained TERT promoter wild-type and male cases. G2 and G3 groups had better prognosis differed in gender. Gene ontology analysis showed that genes enriched in G1 group were involved in DNA replication, cell division and cycle. On the basis of the differential genes between G1 and G2/G3 groups, a six-gene signature was developed with a Cox proportional hazards model. Kaplan-Meier analysis found that the acquired signature could differentiate the outcome of low- and high-risk cases. Moreover, the signature could also serve as an independent prognostic factor for IDH-mutant GBM in the multivariate Cox regression analysis. Gene ontology and gene set enrichment analyses revealed that gene sets correlated with high-risk group were involved in cell cycle, cell proliferation, DNA replication and repair. These finding highlights heterogeneity within IDH-mutant GBMs and will advance our molecular understanding of this lethal cancer.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Brain Neoplasms/pathology , Datasets as Topic , Female , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Male , Mutation , Oligonucleotide Array Sequence Analysis , Prognosis , RNA-Seq , Sex Factors , Transcriptome/genetics
6.
Carcinogenesis ; 40(10): 1229-1239, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31157866

ABSTRACT

1p/19q codeletion, which leads to the abnormal expression of 1p19q genes in oligodendroglioma, is associated with chemosensitivity and favorable prognosis. Here, we aimed to explore the clinical implications of 1p19q gene expression in 1p/19q non-codel gliomas. We analyzed expression of 1p19q genes in 668 1p/19q non-codel gliomas obtained from The Cancer Genome Atlas (n = 447) and the Chinese Glioma Genome Atlas (n = 221) for training and validation, respectively. The expression of 1p19q genes was significantly correlated with the clinicopathological features and overall survival of 1p/19q non-codel gliomas. Then, we derived a risk signature of 25 selected 1p19q genes that not only had prognosis value in total 1p/19q non-codel gliomas but also had prognosis value in stratified gliomas. The prognosis value of the risk signature was superior than known clinicopathological features in 1p/19q non-codel gliomas and was also highly associated with the following features: loss of CDKN2A/B copy number in mutant-IDH-astrocytoma; telomerase reverse transcriptase (TERT) promoter mutation, combined chromosome 7 gain/chromosome 10 loss and epidermal growth factor receptor amplification in wild-type-IDH-astrocytoma; classical and mesenchymal subtypes in glioblastoma. Furthermore, genes enriched in the biological processes of cell division, extracellular matrix, angiogenesis significantly correlated to the signature risk score, and this is also supported by the immunohistochemistry and cell biology experiments. In conclusion, the expression profile of 1p19q genes is highly associated with the malignancy and prognosis of 1p/19q non-codel gliomas. A 25-1p19q-gene signature has powerfully predictive value for both malignant molecular pathological features and prognosis across distinct subgroups of 1p/19q non-codel gliomas.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Chromosome Deletion , Chromosomes, Human, Pair 19/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , Mutation , Adult , Aged , Aged, 80 and over , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Cell Movement , Cell Proliferation , Follow-Up Studies , Glioma/genetics , Glioma/surgery , Humans , Middle Aged , Prognosis , RNA-Seq , Survival Rate , Transcriptome , Tumor Cells, Cultured , Young Adult
7.
J Cell Mol Med ; 23(11): 7741-7748, 2019 11.
Article in English | MEDLINE | ID: mdl-31475440

ABSTRACT

Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism-related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine-gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low- and high-risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high-risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.


Subject(s)
Brain Neoplasms/genetics , Genes, Neoplasm , Glioma/genetics , Lipid Metabolism/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Division , Cohort Studies , Female , Glioma/immunology , Glioma/pathology , Humans , Male , Multivariate Analysis , Neoplasm Grading , Phenotype , Prognosis , Proportional Hazards Models , Risk Factors
8.
Cancer Sci ; 110(1): 321-333, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30431206

ABSTRACT

Metabolic reprogramming has been proposed to be a hallmark of cancer. Aside from the glycolytic pathway, the metabolic changes of cancer cells primarily involve amino acid metabolism. However, in glioma, the characteristics of the amino acid metabolism-related gene set have not been systematically profiled. In the present study, RNA sequencing expression data from 309 patients in the Chinese Glioma Genome Atlas database were included as a training set, while another 550 patients within The Cancer Genome Atlas database were used to validate. Consensus clustering of the 309 samples yielded two robust groups. Compared with Cluster1, Cluster2 correlated with a better clinical outcome. We then developed an amino acid metabolism-related risk signature for glioma. Our results showed that patients in the high-risk group had dramatically shorter overall survival than low-risk counterparts in any subgroup, stratified by isocitrate dehydrogenase and 1p/19q status based on the 2016 World Health Organization classification guidelines. The 30-gene signature showed better prognostic value than the traditional factors "age" and "grade" by analyzing the receiver operating characteristic curve with areas under curve of 0.966, 0.692, 0.898 and 0.975, 0.677, 0.885 for 3- and 5-year survival, respectively. Moreover, univariate and multivariate analysis showed that the 30-gene signature was an independent prognostic factor for glioma. Furthermore, Gene Ontology analysis and Gene Set Enrichment Analysis showed that tumors with a high risk score correlated with various aspects of the malignancy of glioma. In summary, we demonstrated a novel amino acid metabolism-related risk signature for predicting prognosis for glioma.


Subject(s)
Amino Acids/metabolism , Brain Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/metabolism , Child , Cluster Analysis , Female , Glioma/metabolism , Humans , Male , Middle Aged , Prognosis , Risk Factors , Survival Analysis , Young Adult
9.
Mod Pathol ; 32(1): 4-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30291347

ABSTRACT

The methylation status of the promoter of MGMT gene is a crucial factor influencing clinical decision-making in patients with gliomas. MGMT pyrosequencing results are often dichotomized by a cut-off value based on an average of several tested CpGs. However, this method frequently results in a "gray zone", representing a dilemma for physicians. We therefore propose a novel analytical model for MGMT methylation pyrosequencing. MGMT CpG heterogeneity was investigated in 213 glioma patients in two tested cohorts: cohort A in which CpGs 75-82 were tested and cohort B in which CpGs 72-78 were tested. The predictive performances of the novel and traditional averaging models were compared in 135 patients who received temozolomide using receiver operating characteristic curves and Kaplan-Meier curves, and in patients stratified according to isocitrate dehydrogenase gene mutation status. The results were validated in an independent cohort of 65 consecutive patients with high-grade gliomas from the Chinese Glioma Genome Atlas database. Heterogeneity of MGMT promoter CpG methylation level was observed in most gliomas. The optimal cut-off value for each individual CpG varied from 4-16%. The current analysis defined MGMT promoter methylation as occurring when at least three CpGs exceeded their respective cut-off values. This novel analysis could accurately predict the prognosis of patients in the methylation "gray zone" according to the standard averaging method, and improved the area under the curves from 0.67, 0.76, and 0.67 to 0.70, 0.84, and 0.72 in cohorts A, B, and the validation cohort, respectively, demonstrating superiority of this analytical method in all three cohorts. Furthermore, the advantages of the novel analysis were retained regardless of WHO grade and isocitrate dehydrogenase gene mutation status. In conclusion, this novel analytical model offers an improved clinical predictive performance for MGMT pyrosequencing results and is suitable for clinical use in patients with gliomas.


Subject(s)
Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/genetics , High-Throughput Nucleotide Sequencing/methods , Tumor Suppressor Proteins/genetics , Adult , Female , Humans , Male , Middle Aged
10.
Cancer Cell Int ; 19: 155, 2019.
Article in English | MEDLINE | ID: mdl-31171919

ABSTRACT

BACKGROUND: Abnormal expression of the eukaryotic initiation factor 3 (eIF3) subunits plays critical roles in tumorigenesis and progression, and also has potential prognostic value in cancers. However, the expression and clinical implications of eIF3 subunits in glioma remain unknown. METHODS: Expression data of eIF3 for patients with gliomas were obtained from the Chinese Glioma Genome Atlas (CGGA) (n = 272) and The Cancer Genome Atlas (TCGA) (n = 595). Cox regression, the receiver operating characteristic (ROC) curves and Kaplan-Meier analysis were used to study the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were utilized for functional prediction. RESULTS: In both the CGGA and TCGA datasets, the expression levels of eIF3d, eIF3e, eIF3f, eIF3h and eIF3l highly were associated with the IDH mutant status of gliomas. The expression of eIF3b, eIF3i, eIF3k and eIF3m was increased with the tumor grade, and was associated with poorer overall survival [All Hazard ratio (HR) > 1 and P < 0.05]. By contrast, the expression of eIF3a and eIF3l was decreased in higher grade gliomas and was associated with better overall survival (Both HR < 1 and P < 0.05). Importantly, the expression of eIF3i (located on chromosome 1p) and eIF3k (Located on chromosome 19q) were the two highest risk factors in both the CGGA [eIF3i HR = 2.068 (1.425-3.000); eIF3k HR = 1.737 (1.166-2.588)] and TCGA [eIF3i HR = 1.841 (1.642-2.064); eIF3k HR = 1.521 (1.340-1.726)] databases. Among eIF3i, eIF3k alone or in combination, the expression of eIF3i was the more robust in stratifying the survival of glioma in various pathological subgroups. The expression of eIF3i was an independent prognostic factor in IDH-mutant lower grade glioma (LGG) and could also predict the 1p/19q codeletion status of IDH-mutant LGG. Finally, GO and GSEA analysis showed that the elevated expression of eIF3i was significantly correlated with the biological processes of cell proliferation, mRNA processing, translation, T cell receptor signaling, NF-κB signaling and others. CONCLUSIONS: Our study reveals the expression alterations during glioma progression, and highlights the prognostic value of eIF3i in IDH-mutant LGG.

11.
Neurochem Res ; 42(6): 1847-1863, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28478595

ABSTRACT

Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Cell Movement/physiology , Glioma/pathology , Animals , Astrocytes/pathology , Brain/metabolism , Brain/surgery , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Glioma/metabolism , Glioma/surgery , Humans
12.
Neurochem Res ; 42(1): 272-282, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27837318

ABSTRACT

Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.


Subject(s)
Astrocytes/metabolism , Cell Movement/physiology , Animals , Brain/cytology , Brain/metabolism , Cell Adhesion/physiology , Cells, Cultured , Humans , Spinal Cord/cytology , Spinal Cord/metabolism
13.
Sheng Li Xue Bao ; 69(5): 703-714, 2017 Oct 25.
Article in Zh | MEDLINE | ID: mdl-29063118

ABSTRACT

DREAM (downstream regulatory element antagonist modulator), Calsenilin and KChIP3 (potassium channel interacting protein 3) belong to the neuronal calcium sensor (NCS) superfamily, which transduces the intracellular calcium signaling into a variety of activities. They are encoded by the same gene locus, but have distinct subcellular locations. DREAM was first found to interact with DRE (downstream regulatory element) site in the vicinity of the promoter of prodynorphin gene to suppress gene transcription. Calcium can disassemble this interaction by binding reversibly to DREAM protein on its four EF-hand motifs. Apart from having calcium dependent DRE site binding, DREAM can also interact with other transcription factors, such as cAMP responsive element binding protein (CREB), CREB-binding protein (CBP) and cAMP responsive element modulator (CREM), by this concerted actions, DREAM extends the gene pool under its control. DREAM is predominantly expressed in central nervous system with its highest level in cerebellum, and accumulating evidence demonstrated that DREAM might play important roles in pain sensitivity. Novel findings have shown that DREAM is also involved in learning and memory processes, Alzheimer's disease and stroke. This mini-review provides a brief introduction of its discovery history and protein structure properties, focusing on the mechanism of DREAM nuclear translocation and gene transcription regulation functions.


Subject(s)
Gene Expression Regulation , Kv Channel-Interacting Proteins/physiology , Repressor Proteins/physiology , Animals , Calcium Signaling/physiology , Humans , Kv Channel-Interacting Proteins/genetics , Pain Threshold , Repressor Proteins/genetics
14.
J Neurosci Res ; 93(2): 253-67, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25250856

ABSTRACT

The superfamily of importin-ß-related proteins is the largest class of nuclear transport receptors and can be generally divided into importins and exportins according to their transport directions. Eleven importins and seven exportins have been identified, and the expression patterns of both classes are important for their functions in nucleocytoplasmic transport activities. This study demonstrates that all of the importins (importin-ß; transportin-1, -2, and -3; and importin-4, -5, -7, -8, -9, -11, and -13) and all the exportins (exportin-1, -2, -4, -5, -6, -7, and -t) are differentially expressed in the cerebral cortex, cerebellum, hippocampus, and brainstem and in primary cultures of cerebral cortical astrocytes and neurons. For astrocytes, we observed that different importins and exportins displayed different expression changes during 0-6 hr of ischemia treatment, especially an increase of both the mRNA and the protein of exportin-7. Immunostaining showed that exportin-7 accumulated inside the nucleus and around the nuclear envelope. In addition, we noticed an increased cytoplasmic distribution of one of the cargo proteins of exportin-7, LKB1, an important element in maintaining energy homeostasis. This increased cytoplasmic distribution was accompanied by an increased expression of exportin-7 under ischemia in astrocytes. We demonstrate that exportin-7 responds to ischemia in astrocytes and that this response involves translocation of LKB1, a protein that plays important roles during metabolic stress, from the nucleus to the cytoplasm.


Subject(s)
Astrocytes/metabolism , Astrocytes/ultrastructure , Brain Ischemia/pathology , Gene Expression Regulation/physiology , Protein Serine-Threonine Kinases/metabolism , ran GTP-Binding Protein/metabolism , AMP-Activated Protein Kinases , Animals , Cell Hypoxia/physiology , Cell Nucleus/metabolism , Cells, Cultured , Embryo, Mammalian , Gene Expression Regulation/genetics , Karyopherins/genetics , Karyopherins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred ICR , Neurons/cytology , Neurons/metabolism , Photobleaching , Protein Serine-Threonine Kinases/genetics , Protein Transport/genetics , Protein Transport/physiology , RNA, Messenger/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism , ran GTP-Binding Protein/genetics
15.
Neurochem Res ; 40(9): 1929-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26248512

ABSTRACT

Cadmium (Cd), a highly ubiquitous toxic heavy metal, can contaminate the environment, including agricultural soil, water and air, via industrial runoff and other sources of pollution. Cd accumulated in the body via direct exposure or through the food chain results in neurodegeneration and many other diseases. Previous studies on its toxicity in the central nervous system (CNS) focused mainly on neurons. To obtain a more comprehensive understanding of Cd toxicity for the CNS, we investigated how astrocytes respond to acute and chronic Cd exposure and its toxic molecular mechanisms. When primary cultures of cerebral cortical astrocytes incubated with 1-300 µM CdCl2, morphological changes, LDH release and cell death were observed in a time and dose-dependent manner. Further studies demonstrated that acute and chronic Cd treatment phosphorylated JNK, p38 and Akt to different degrees, while ERK1/2 was only phosphorylated under low doses of Cd (10 µM) exposure. Inhibition of JNK and PI3K/Akt, but not of p38, could partially protect astrocyte from cytotoxicity in chronic and acute Cd exposure. Moreover, Cd also induced a strong calcium signal, while BAPTA, a specific intracellular calcium (Ca(2+)) chelator, prevented Cd-induced intracellular increase of calcium levels in astrocytes; inhibited the Cd-induced activation of ERK1/2, JNK, p38 and Akt; and also significantly reduced astrocyte cell death. All of these results suggested that the Cd-Ca(2+)-MAPK and PI3K/Akt signaling pathways were involved in Cd-induced toxicity in astrocytes. This toxicity involvement indicates that these pathways may be exploited as a target for the prevention of Cd-induced neurodegenerative diseases.


Subject(s)
Astrocytes/drug effects , Cadmium/toxicity , Calcium Signaling , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Astrocytes/enzymology , Dose-Response Relationship, Drug , Mice , Mice, Inbred ICR
16.
Brain Pathol ; 34(3): e13198, 2024 May.
Article in English | MEDLINE | ID: mdl-37530224

ABSTRACT

Liu et al. describe the adverse prognostic role of MET fusions and splicing variants in astrocytoma, isocitrate dehydrogenase mutant. On this basis, MET fusions and splicing variants was suggested to be a biomarker for the diagnosis of high-grade astrocytoma, isocitrate dehydrogenase mutant.


Subject(s)
Astrocytoma , Brain Neoplasms , Humans , Isocitrate Dehydrogenase/genetics , Prognosis , Brain Neoplasms/genetics , Mutation/genetics , Astrocytoma/genetics
17.
Glia ; 61(10): 1748-65, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23922257

ABSTRACT

Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.


Subject(s)
Aquaporin 5/metabolism , Astrocytes/metabolism , Brain Injuries/pathology , Brain/metabolism , Brain/pathology , Gene Expression Regulation/physiology , Animals , Animals, Newborn , Cell Hypoxia/physiology , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Embryo, Mammalian , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred ICR , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Subcellular Fractions/metabolism , Subcellular Fractions/pathology , Time Factors , Transfection , Wounds and Injuries/pathology
18.
Glia ; 61(12): 2063-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24123203

ABSTRACT

Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GFAP). Using an in vitro scratch injury model, we scratched primary cultures of cerebral cortical astrocytes and observed an influx of calcium in the form of waves spreading away from the wound through gap junctions. Using the calcium blocker BAPTA-AM and the JNK inhibitor SP600125, we demonstrated that the calcium wave triggered the activation of JNK, which then phosphorylated the transcription factor c-Jun to facilitate the binding of AP-1 to the GFAP gene promoter to switch on GFAP upregulation. Blocking calcium mobilization with BAPTA-AM in an in vivo stab wound model reduced GFAP expression and glial scar formation, showing that the calcium signal, and the subsequent regulation of downstream signaling molecules, plays an essential role in brain injury response. Our findings demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c-Jun/AP-1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Genes, jun/physiology , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , MAP Kinase Signaling System/physiology , Transcription Factor AP-1/metabolism , Animals , Astrocytes/cytology , Calcium Signaling/genetics , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Gliosis/genetics , Mice , Mice, Inbred ICR , Transcription Factor AP-1/genetics , Transcriptional Activation
19.
Brain Pathol ; 33(4): e13153, 2023 07.
Article in English | MEDLINE | ID: mdl-36751054

ABSTRACT

H3 K27-altered diffuse midline glioma is a highly lethal pediatric-type tumor without efficacious treatments. Recent findings have highlighted the heterogeneity among diffuse midline gliomas with different locations and ages. Compared to tumors located in the brain stem and thalamus, the molecular and clinicopathological features of H3 K27-altered spinal cord glioma are still largely elusive, thus hindering the accurate management of patients. Here we aimed to characterize the clinicopathological and molecular features of H3 K27M-mutant spinal cord glioma in 77 consecutive cases. We found that the H3 K27M-mutant spinal cord glioma, with a median age of 35 years old, had a significantly better prognosis than H3 K27M-mutant brain tumors. We noticed a molecular heterogeneity of H3 K27M-mutant spinal cord astrocytoma via targeted sequencing with 34 cases. TP53 mutation which occurred in 58.8% of cases is mutually exclusive with PPM1D (26%) and NF1 (44%) mutations. The TP53-mutant cases had a significantly higher number of copy number variants (CNV) and a marginally higher proportion of pediatric patients (age at diagnosis <18 years old, p = 0.056). Cox regression and Kaplan-Meier curve analysis showed that the higher number of CNV events (≥3), chromosome (Chr) 9p deletion, Chr 10p deletion, ATRX mutation, CDK6 amplification, and retinoblastoma protein (RB) pathway alteration are associated with worse survival. Cox regression analysis with clinicopathological features showed that glioblastoma histological type and a high Ki-67 index (>10%) are associated with a worse prognosis. Interestingly, the histological type, an independent prognostic factor in multivariate Cox regression, can also stratify molecular features of H3 K27M-mutant spinal cord glioma, including the RB pathway, KRAS/PI3K pathway, and chromosome arms CNV. In conclusion, although all H3 K27M-mutant spinal cord diffuse glioma were diagnosed as WHO Grade 4, the histological type, molecular features representing chromatin instability, and molecular alterations associated with accelerated cell proliferative activity should not be ignored in clinical management.


Subject(s)
Brain Neoplasms , Glioma , Spinal Cord Neoplasms , Humans , Child , Adult , Adolescent , Histones/genetics , Prognosis , Phosphatidylinositol 3-Kinases/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Spinal Cord Neoplasms/genetics , Mutation , Genomics
20.
Cancer Discov ; 12(12): 2820-2837, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36122307

ABSTRACT

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Prognosis , Hypoxia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL