Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Affiliation country
Publication year range
1.
Rev Sci Instrum ; 79(4): 045104, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18447549

ABSTRACT

A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.

2.
Rev Sci Instrum ; 78(11): 115107, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18052504

ABSTRACT

A pulse power system (1 MV, 50 kA, and 100 ns) based on Marx generator and Blumlein pulse forming line has been studied for characterization of a general system. Total erected Marx inductance and series resistance are calculated from modular testing of Marx generator and testing of Marx generator with Blumlein. The complete pulse power system has been tested with the termination of a liquid resistor load for finding the Blumlein characteristic impedance. Equivalent electrical circuits during the charging and discharging of the Blumlein are constructed from the characterized parameters of the system. These equivalent circuits can be used in the analysis of prepulse voltage and droop in the flat top of the main pulse in the pulse power systems based on Marx generator and Blumlein.

3.
Rev Sci Instrum ; 83(5): 054703, 2012 May.
Article in English | MEDLINE | ID: mdl-22667637

ABSTRACT

An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 µs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

4.
Rev Sci Instrum ; 83(2): 025105, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380123

ABSTRACT

Temporal jitter in a magnetic pulse compression based copper vapor laser (CVL) system is analyzed by considering ripple present in the input dc power supply and ripple present in the magnetic core resetting power supply. It is shown that the jitter is a function of the ratio of operating voltage to the designed voltage, percentage ripple, and the total propagation delay of the magnetic pulse compression circuit. Experimental results from a CVL system operating at a repetition rate of 9 kHz are presented.


Subject(s)
Copper/chemistry , Lasers , Magnets , Time Factors , Volatilization
5.
Rev Sci Instrum ; 83(8): 084702, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938319

ABSTRACT

In this article a novel way of synchronizing two parallel connected sparkgap switches with accuracies of 1-5 ns for high frequency pulsed power applications is described. The circuit design of a synchronized sparkgap switch circuit is discussed. The circuit uses a combination of one master sparkgap and a set of inductor and capacitors to synchronize two sparkgaps and can be controlled via an IGBT switch. Critical issues for circuit design are presented together with analytical calculations and simulations. Experimental verification of the novel topology is carried out in a prototype experimental setup. Results showing nanosecond level of accuracy in synchronization are reported in this paper along with simulations and analysis.

6.
Rev Sci Instrum ; 82(4): 045111, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21529043

ABSTRACT

LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications.

7.
Rev Sci Instrum ; 82(8): 084705, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21895264

ABSTRACT

This paper presents a new high voltage pulse shaping methodology for pulsed power applications. The aim is to generate high voltage square pulse across anode cathode gap of e-beam diodes. The non-linear time varying perveance characteristics of e-beam diodes are used for shaping of output voltage pulse across it, generated directly from Marx generator. Analytically, it has been shown in the paper that under certain conditions, if achieved, Marx generator feeding an e-beam diode can produce a square-like pulse at the output, without any extra pulse shaping arrangements. Experimental results to support the analysis are also presented in the paper.

8.
Rev Sci Instrum ; 80(12): 123305, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20059138

ABSTRACT

Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

9.
Rev Sci Instrum ; 80(7): 075105, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19655979

ABSTRACT

A pulse power system (1 MV, 50 kA, and 100 ns) based on Marx generator and Blumlein pulse forming line has been built for generating high power microwaves. The Blumlein configuration poses a prepulse problem and hence the diode gap had to be increased to match the diode impedance to the Blumlein impedance during the main pulse. A simple method to eliminate prepulse voltage using a vacuum sparkgap and a resistor is given. Another fundamental approach of increasing the inductance of Marx generator to minimize the prepulse voltage is also presented. Experimental results for both of these configurations are given.

10.
Rev Sci Instrum ; 79(10): 103301, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044706

ABSTRACT

Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

SELECTION OF CITATIONS
SEARCH DETAIL