ABSTRACT
For sequences that are highly divergent, there is often insufficient information to infer accurate alignments, and phylogenetic uncertainty may be high. One way to address this issue is to make use of protein structural information, since structures generally diverge more slowly than sequences. In this work, we extend a recently developed stochastic model of pairwise structural evolution to multiple structures on a tree, analytically integrating over ancestral structures to permit efficient likelihood computations under the resulting joint sequence-structure model. We observe that the inclusion of structural information significantly reduces alignment and topology uncertainty, and reduces the number of topology and alignment errors in cases where the true trees and alignments are known. In some cases, the inclusion of structure results in changes to the consensus topology, indicating that structure may contain additional information beyond that which can be obtained from sequences. We use the model to investigate the order of divergence of cytoglobins, myoglobins, and hemoglobins and observe a stabilization of phylogenetic inference: although a sequence-based inference assigns significant posterior probability to several different topologies, the structural model strongly favors one of these over the others and is more robust to the choice of data set.
Subject(s)
Bayes Theorem , Computational Biology/methods , Globins/chemistry , Hemoglobins/chemistry , Myoglobin/chemistry , Animals , Cytoglobin , Globins/genetics , Hemoglobins/genetics , Humans , Markov Chains , Models, Molecular , Mutation , Myoglobin/genetics , Phylogeny , Protein Conformation , Sequence Alignment , Sequence Analysis, ProteinABSTRACT
We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels arise from a classic Links model, and mutations follow a standard substitution matrix, whereas backbone atoms diffuse in three-dimensional space according to an Ornstein-Uhlenbeck process. The model allows for simultaneous estimation of evolutionary distances, indel rates, structural drift rates, and alignments, while fully accounting for uncertainty. The inclusion of structural information enables phylogenetic inference on time scales not previously attainable with sequence evolution models. The model also provides a tool for testing evolutionary hypotheses and improving our understanding of protein structural evolution.