Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proteins ; 87(8): 699-705, 2019 08.
Article in English | MEDLINE | ID: mdl-30958578

ABSTRACT

InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Peptide Elongation Factor G/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Biosynthesis , Protein Conformation , Protein Domains , Ribosomes/chemistry
2.
Archaea ; 2015: 170571, 2015.
Article in English | MEDLINE | ID: mdl-26494982

ABSTRACT

With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area.


Subject(s)
Archaea/enzymology , Biotechnology/methods , DNA Ligases/isolation & purification , DNA Ligases/metabolism , RNA Ligase (ATP)/isolation & purification , RNA Ligase (ATP)/metabolism , Archaea/genetics , DNA Ligases/genetics , Protein Engineering , RNA Ligase (ATP)/genetics
3.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proteomics , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Adhesion Molecules , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Fibrosis , Gemcitabine , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods
4.
Sci Adv ; 9(42): eabp9530, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37851804

ABSTRACT

Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Breast Neoplasms , Animals , Female , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Endothelial Cells/metabolism , Neoplasm Proteins/metabolism
5.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Article in English | MEDLINE | ID: mdl-37640930

ABSTRACT

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Subject(s)
Pancreatic Diseases , Pancreatic Neoplasms , Humans , Gemcitabine , Protein-Lysine 6-Oxidase , Pancreatic Neoplasms/drug therapy
6.
Bio Protoc ; 12(24)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36618089

ABSTRACT

The extracellular matrix (ECM) is a non-cellular network of macromolecules, which provides cells and tissues with structural support and biomechanical feedback to regulate cellular function, tissue tension, and homeostasis. Even subtle changes to ECM abundance, architecture, and organization can affect downstream biological pathways, thereby influencing normal cell and tissue function and also driving disease conditions. For example, in cancer, the ECM is well known to provide both biophysical and biochemical cues that influence cancer initiation, progression, and metastasis, highlighting the need to better understand cell-ECM interactions in cancer and other ECM-enriched diseases. Initial cell-derived matrix (CDM) models were used as an in vitro system to mimic and assess the physiologically relevant three-dimensional (3D) cell-ECM interactions. Here, we describe an expansion to these initial CDM models generated by fibroblasts to assess the effect of genetic or pharmacological intervention on fibroblast-mediated matrix production and organization. Additionally, we highlight current methodologies to quantify changes in the ultrastructure and isotropy of the resulting ECM and also provide protocols for assessing cancer cell interaction with CDMs. Understanding the nature and influence of these complex and heterogeneous processes can offer insights into the biomechanical and biochemical mechanisms, which drive cancer development and metastasis, and how we can target them to improve cancer outcomes. This protocol was validated in: Sci Adv (2021), DOI: 10.1126/sciadv.abh0363.

7.
Mol Oncol ; 15(12): 3242-3255, 2021 12.
Article in English | MEDLINE | ID: mdl-34137158

ABSTRACT

Senescence is a cellular state in which cells undergo persistent cell cycle arrest in response to nonlethal stress. In the treatment of cancer, senescence induction is a potent method of suppressing tumour cell proliferation. In spite of this, senescent cancer cells and adjacent nontransformed cells of the tumour microenvironment can remain metabolically active, resulting in paradoxical secretion of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). The SASP plays a critical role in tumorigenesis, affecting numerous processes including invasion, metastasis, epithelial-to-mesenchymal transition (EMT) induction, therapy resistance and immunosuppression. With increasing evidence, it is becoming clear that cell type, tissue of origin and the primary cellular stressor are key determinants in how the SASP will influence tumour development and progression, including whether it will be pro- or antitumorigenic. In this review, we will focus on recent evidence regarding therapy-induced senescence (TIS) from anticancer agents, including chemotherapy, radiation, immunotherapy, and targeted therapies, and how each therapy can trigger the SASP, which in turn influences treatment efficacy. We will also discuss novel pharmacological manipulation of senescent cancer cells and the SASP, which offers an exciting and contemporary approach to cancer therapeutics. With future research, these adjuvant options may help to mitigate many of the negative side effects and protumorigenic roles that are currently associated with TIS in cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Carcinogenesis , Cellular Senescence , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phenotype , Senescence-Associated Secretory Phenotype , Tumor Microenvironment
8.
Cancers (Basel) ; 13(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34298706

ABSTRACT

Many cancer studies now recognize that disease initiation, progression, and response to treatment are strongly influenced by the microenvironmental niche. Widespread desmoplasia, or fibrosis, is fundamental to pancreatic cancer development, growth, metastasis, and treatment resistance. This fibrotic landscape is largely regulated by cancer-associated fibroblasts (CAFs), which deposit and remodel extracellular matrix (ECM) in the tumor microenvironment (TME). This review will explore the prognostic and functional value of the stromal compartment in predicting outcomes and clinical prognosis in pancreatic ductal adenocarcinoma (PDAC). We will also discuss the major dynamic stromal alterations that occur in the pancreatic TME during tumor development and progression, and how the stromal ECM can influence cancer cell phenotype, metabolism, and immune response from a biochemical and biomechanical viewpoint. Lastly, we will provide an outlook on the latest clinical advances in the field of anti-fibrotic co-targeting in combination with chemotherapy or immunotherapy in PDAC, providing insight into the current challenges in treating this highly aggressive, fibrotic malignancy.

9.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586840

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

10.
Trends Cancer ; 5(11): 724-741, 2019 11.
Article in English | MEDLINE | ID: mdl-31735290

ABSTRACT

Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour microenvironment (TME), where they can perform several protumourigenic functions. Several studies have recently reported that CAFs are more heterogenous and plastic than was previously thought. As such, there has been a shift in the field to study CAF subpopulations and the emergent functions of these subsets in tumourigenesis. In this review, we explore how different aspects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selectively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Molecular Targeted Therapy/methods , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/therapy , Humans , Pancreatic Neoplasms/therapy , Stromal Cells/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL