Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell ; 146(1): 80-91, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21729781

ABSTRACT

Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to origin DNA unwinding and RNA primer synthesis.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , DNA Replication , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Polymerase I/metabolism , DNA-Binding Proteins/metabolism , G1 Phase , Nuclear Proteins/metabolism , Replication Origin , S Phase , Saccharomyces cerevisiae/cytology
2.
Appl Environ Microbiol ; 90(9): e0059924, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39133000

ABSTRACT

Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 and mtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCE: Winogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.


Subject(s)
Carbon , Genome, Bacterial , Leptothrix , Carbon/metabolism , Leptothrix/metabolism , Leptothrix/genetics , Leptothrix/growth & development , Wetlands , Ferrous Compounds/metabolism , Oxidation-Reduction , Iron/metabolism , Carbon Cycle , Autotrophic Processes , Metagenome
3.
Appl Environ Microbiol ; 89(12): e0057023, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38009924

ABSTRACT

IMPORTANCE: In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.


Subject(s)
Gallionellaceae , Oryza , Soil Pollutants , Iron/metabolism , Gallionellaceae/metabolism , Oryza/microbiology , Ecosystem , Oxidation-Reduction , Bacteria/genetics , Bacteria/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Plant Roots/microbiology , Cadmium/metabolism
4.
Appl Environ Microbiol ; 88(2): e0159521, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34788064

ABSTRACT

Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO2 is an important electron sink for Fe(II) oxidation. IMPORTANCE Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.


Subject(s)
Reverse Transcription , Transcriptome , Ferrous Compounds/metabolism , Gallionellaceae , Oxidation-Reduction , Polymerase Chain Reaction
5.
Environ Sci Technol ; 56(23): 17443-17453, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36417801

ABSTRACT

Fe(II) clays are common across many environments, making them a potentially significant microbial substrate, yet clays are not well established as an electron donor. Therefore, we explored whether Fe(II)-smectite supports the growth of Sideroxydans lithotrophicus ES-1, a microaerophilic Fe(II)-oxidizing bacterium (FeOB), using synthesized trioctahedral Fe(II)-smectite and 2% oxygen. S. lithotrophicus grew substantially and can oxidize Fe(II)-smectite to a higher extent than abiotic oxidation, based on X-ray near-edge spectroscopy (XANES). Sequential extraction showed that edge-Fe(II) is oxidized before interior-Fe(II) in both biotic and abiotic experiments. The resulting Fe(III) remains in smectite, as secondary minerals were not detected in biotic and abiotic oxidation products by XANES and Mössbauer spectroscopy. To determine the genes involved, we compared S. lithotrophicus grown on smectite versus Fe(II)-citrate using reverse-transcription quantitative PCR and found that cyc2 genes were highly expressed on both substrates, while mtoA was upregulated on smectite. Proteomics confirmed that Mto proteins were only expressed on smectite, indicating that ES-1 uses the Mto pathway to access solid Fe(II). We integrate our results into a biochemical and mineralogical model of microbial smectite oxidation. This work increases the known substrates for FeOB growth and expands the mechanisms of Fe(II)-smectite alteration in the environment.


Subject(s)
Ferrous Compounds , Iron , Iron/chemistry , Clay , Oxidation-Reduction , Ferrous Compounds/metabolism
6.
Environ Sci Technol ; 55(13): 9362-9371, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34110796

ABSTRACT

Organic ligands are widely distributed and can affect microbially driven Fe biogeochemical cycles, but effects on microbial iron oxidation have not been well quantified. Our work used a model microaerophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 to quantify biotic Fe(II) oxidation rates in the presence of organic ligands at 0.02 atm O2 and pH 6.0. We used two common Fe chelators with different binding strengths: citrate (log KFe(II)-citrate = 3.20) and nitrilotriacetic acid (NTA) (log KFe(II)-NTA = 8.09) and two standard humic substances, Pahokee peat humic acid (PPHA) and Suwannee River fulvic acid (SRFA). Our results provide rate constants for biotic and abiotic Fe(II) oxidation over different ligand concentrations and furthermore demonstrate that various models and natural iron-binding ligands each have distinct effects on abiotic versus biotic Fe(II) oxidation rates. We show that NTA accelerates abiotic oxidation and citrate has negligible effects, making it a better laboratory chelator. The humic substances only affect biotic Fe(II) oxidation, via a combination of chelation and electron transfer. PPHA accelerates biotic Fe(II) oxidation, while SRFA decelerates or accelerates the rate depending on concentration. The specific nature of organic-Fe microbe interactions may play key roles in environmental Fe(II) oxidation, which have cascading influences on cycling of nutrients and contaminants that associate with Fe oxide minerals.


Subject(s)
Ferric Compounds , Ferrous Compounds , Gallionellaceae , Ligands , Oxidation-Reduction
7.
Appl Environ Microbiol ; 86(24)2020 11 24.
Article in English | MEDLINE | ID: mdl-33008825

ABSTRACT

Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.


Subject(s)
Burkholderiales/metabolism , Iron/metabolism , Rivers/microbiology , Wastewater/microbiology , Germany , Mining , Oxidation-Reduction
8.
Mol Biol Evol ; 33(12): 3108-3132, 2016 12.
Article in English | MEDLINE | ID: mdl-27604222

ABSTRACT

Translational stop codon readthrough emerged as a major regulatory mechanism affecting hundreds of genes in animal genomes, based on recent comparative genomics and ribosomal profiling evidence, but its evolutionary properties remain unknown. Here, we leverage comparative genomic evidence across 21 Anopheles mosquitoes to systematically annotate readthrough genes in the malaria vector Anopheles gambiae, and to provide the first study of abundant readthrough evolution, by comparison with 20 Drosophila species. Using improved comparative genomics methods for detecting readthrough, we identify evolutionary signatures of conserved, functional readthrough of 353 stop codons in the malaria vector, Anopheles gambiae, and of 51 additional Drosophila melanogaster stop codons, including several cases of double and triple readthrough and of readthrough of two adjacent stop codons. We find that most differences between the readthrough repertoires of the two species arose from readthrough gain or loss in existing genes, rather than birth of new genes or gene death; that readthrough-associated RNA structures are sometimes gained or lost while readthrough persists; that readthrough is more likely to be lost at TAA and TAG stop codons; and that readthrough is under continued purifying evolutionary selection in mosquito, based on population genetic evidence. We also determine readthrough-associated gene properties that predate readthrough, and identify differences in the characteristic properties of readthrough genes between clades. We estimate more than 600 functional readthrough stop codons in mosquito and 900 in fruit fly, provide evidence of readthrough control of peroxisomal targeting, and refine the phylogenetic extent of abundant readthrough as following divergence from centipede.


Subject(s)
Anopheles/genetics , Anopheles/metabolism , Codon, Terminator , Peptide Chain Termination, Translational , Animals , Biological Evolution , Codon , Drosophila melanogaster , Evolution, Molecular , Genomics , Open Reading Frames , Phylogeny , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism
9.
Environ Microbiol ; 18(9): 2856-67, 2016 09.
Article in English | MEDLINE | ID: mdl-26234460

ABSTRACT

The green sulfur bacteria, the Chlorobi, are phototrophic bacteria that oxidize sulfide and deposit extracellular elemental sulfur globules [S(0)]. These are subsequently consumed after sulfide is exhausted. S(0) globules from a Chlorobaculum tepidum mutant strain were purified and used to show that the wild-type strain of Cba. tepidum can grow on biogenic S(0) globules as the sole photosynthetic electron donor, i.e. in medium with no other source of reducing power. Growth yields and rates on biogenic S(0) are comparable with those previously determined for Cba. tepidum grown on sulfide as the sole electron donor. Contact between cells and S(0) was required for growth. However, only a fraction of the cell population was firmly attached to S(0) globules. Microscopic examination of cultures growing on S(0) demonstrated cell-S(0) attachment and allowed for the direct observation of S(0) globule degradation. Bulk chemical analysis, scanning electron microscopy, secondary ion mass spectrometry and SDS-PAGE indicate that Cba. tepidum biogenic S(0) globules contain carbon, oxygen and nitrogen besides S and may be associated with specific proteins. These observations suggest that current models of S(0) oxidation in the Chlorobi need to be revised to take into account the role of cell-S(0) interactions in promoting S(0) degradation.


Subject(s)
Chlorobi/metabolism , Sulfur/metabolism , Chlorobi/growth & development , Electrons , Photosynthesis
10.
PLoS Genet ; 8(5): e1002643, 2012.
Article in English | MEDLINE | ID: mdl-22615576

ABSTRACT

The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.


Subject(s)
Chromosomes , DNA Replication , Recombination, Genetic , S Phase , Saccharomyces cerevisiae/genetics , Binding Sites , Centromere/genetics , Chromosomal Proteins, Non-Histone , Chromosome Breakage , DNA Replication/genetics , DNA-Binding Proteins , Genome, Fungal , Meiosis/genetics , Mitosis/genetics , Replication Origin/genetics , S Phase/genetics , Saccharomyces cerevisiae Proteins
11.
Genome Res ; 21(12): 2096-113, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21994247

ABSTRACT

While translational stop codon readthrough is often used by viral genomes, it has been observed for only a handful of eukaryotic genes. We previously used comparative genomics evidence to recognize protein-coding regions in 12 species of Drosophila and showed that for 149 genes, the open reading frame following the stop codon has a protein-coding conservation signature, hinting that stop codon readthrough might be common in Drosophila. We return to this observation armed with deep RNA sequence data from the modENCODE project, an improved higher-resolution comparative genomics metric for detecting protein-coding regions, comparative sequence information from additional species, and directed experimental evidence. We report an expanded set of 283 readthrough candidates, including 16 double-readthrough candidates; these were manually curated to rule out alternatives such as A-to-I editing, alternative splicing, dicistronic translation, and selenocysteine incorporation. We report experimental evidence of translation using GFP tagging and mass spectrometry for several readthrough regions. We find that the set of readthrough candidates differs from other genes in length, composition, conservation, stop codon context, and in some cases, conserved stem-loops, providing clues about readthrough regulation and potential mechanisms. Lastly, we expand our studies beyond Drosophila and find evidence of abundant readthrough in several other insect species and one crustacean, and several readthrough candidates in nematode and human, suggesting that functionally important translational stop codon readthrough is significantly more prevalent in Metazoa than previously recognized.


Subject(s)
Codon, Terminator/physiology , Genes, Insect/physiology , Open Reading Frames/physiology , Protein Biosynthesis/physiology , Animals , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila melanogaster , Humans
12.
bioRxiv ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39345469

ABSTRACT

Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is Sideroxydans lithotrophicus ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, S. lithotrophicus ES-1 was grown on dissolved Fe(II)-citrate and magnetite. S. lithotrophicus ES-1 oxidized all dissolved Fe 2+ released from magnetite, and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of S. lithotrophicus ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in S. lithotrophicus ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated the iron oxidizer S. lithotrophicus ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II). Importance: Mineral-bound iron could be a vast source of energy to iron-oxidizing bacteria, but there is limited evidence of this metabolism, and it has been unknown whether the mechanisms of solid and dissolved Fe(II) oxidation are distinct. In iron-reducing bacteria, multiheme cytochromes can facilitate iron mineral reduction, and here, we link a multiheme cytochrome-based pathway to mineral oxidation, broadening the known functionality of multiheme cytochromes. Given the growing recognition of microbial oxidation of minerals and cathodes, increasing our understanding of these mechanisms will allow us to recognize and trace the activities of mineral-oxidizing microbes. This work shows how solid iron minerals can promote microbial growth, which if widespread, could be a major agent of geologic weathering and mineral-fueled nutrient cycling in sediments, aquifers, and rock-hosted environments.

13.
Cell Rep Methods ; 4(6): 100796, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38866007

ABSTRACT

We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.


Subject(s)
Proteome , Proteomics , Proteomics/methods , Proteome/analysis , Proteome/metabolism , Silicon Dioxide/chemistry , Polytetrafluoroethylene
14.
mSystems ; 8(6): e0003823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37882557

ABSTRACT

IMPORTANCE: Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron (oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate of carbon and many metals. To fully understand environmental microbial iron oxidation, we need a thorough accounting of iron oxidation mechanisms. In this study, we show the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer electrons from extracellular substrates and likely confer metabolic capabilities that help Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae appear to specialize in iron oxidation, so it would be advantageous for them to have multiple mechanisms to oxidize various forms of iron, given the many iron minerals on Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple iron/mineral oxidation mechanisms may help drive the widespread ecological success of Gallionellaceae.


Subject(s)
Gallionellaceae , Iron , Iron/metabolism , Phylogeny , Oxidation-Reduction , Minerals/metabolism
15.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36747706

ABSTRACT

The iron-oxidizing Gallionellaceae drive a wide variety of biogeochemical cycles through their metabolisms and biominerals. To better understand the environmental impacts of Gallionellaceae, we need to improve our knowledge of their diversity and metabolisms, especially any novel iron oxidation mechanisms. Here, we used a pangenomic analysis of 103 genomes to resolve Gallionellaceae phylogeny and explore the range of genomic potential. Using a concatenated ribosomal protein tree and key gene patterns, we determined Gallionellaceae has four genera, divided into two groups-iron-oxidizing bacteria (FeOB) Gallionella, Sideroxydans, and Ferriphaselus with known iron oxidases (Cyc2, MtoA) and nitrite-oxidizing bacteria (NOB) Candidatus Nitrotoga with nitrite oxidase (Nxr). The FeOB and NOB have similar electron transport chains, including genes for reverse electron transport and carbon fixation. Auxiliary energy metabolisms including S oxidation, denitrification, and organotrophy were scattered throughout the Gallionellaceae FeOB. Within FeOB, we found genes that may represent adaptations for iron oxidation, including a variety of extracellular electron uptake (EEU) mechanisms. FeOB genomes encoded more predicted c-type cytochromes overall, notably more multiheme c-type cytochromes (MHCs) with >10 CXXCH motifs. These include homologs of several predicted outer membrane porin-MHC complexes, including MtoAB and Uet. MHCs are known to efficiently conduct electrons across longer distances and function across a wide range of redox potentials that overlap with mineral redox potentials, which can help expand the range of usable iron substrates. Overall, the results of pangenome analyses suggest that the Gallionellaceae genera Gallionella, Sideroxydans, and Ferriphaselus are primarily iron oxidizers, capable of oxidizing dissolved Fe2+ as well as a range of solid iron or other mineral substrates.

16.
Environ Microbiol ; 14(7): 1671-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22151253

ABSTRACT

The Fe-depositing microorganism Gallionella ferruginea was first described in 1836 based on its association with Fe-rich environments and its distinctive morphology. Since then, this morphology has been widely used to identify G. ferruginea. Researchers have isolated several Fe-oxidizing bacteria (FeOB) related to Gallionella; however, few isolates have produced organized extracellular biomineral structures, and of these, only one stalk former has a sequenced 16S rRNA gene, listed as G. ferruginea in the GenBank database. Here we report the isolation and characterization of a novel stalk-forming Fe-oxidizing bacterium, strain R-1, from a freshwater Fe seep. Despite a strong morphological similarity to G. ferruginea, this isolate has only 93.55% 16S rRNA gene sequence similarity with the previously determined sequence. R-1 only grows on Fe(II) substrates, at pH 5.6 to 7.0 and from 10°C to 35°C, with a doubling time of ∼15 h at pH 6.3 and 22°C. It is a Betaproteobacterium, most closely related to uncultured bacteria from microaerobic Fe(II)-rich groundwater springs. The most closely related isolates are Sideroxydans spp. (94.05-94.42% sequence similarity), FeOB that are not known to produce morphologically distinct minerals. To our knowledge, this is the first reported stalk-forming freshwater FeOB isolate distinct from Gallionella.


Subject(s)
Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Ferrous Compounds/metabolism , Groundwater/microbiology , Phylogeny , Betaproteobacteria/classification , Betaproteobacteria/isolation & purification , Betaproteobacteria/ultrastructure , Fresh Water/microbiology , Gallionellaceae/genetics , Gallionellaceae/metabolism , Genes, Bacterial , Microscopy, Electron, Transmission , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
17.
Environ Microbiol ; 13(11): 2915-29, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21895918

ABSTRACT

Aerobic neutrophilic Fe-oxidizing bacteria (FeOB) thrive where oxic and iron-rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk-forming Fe-oxidizers adapted to these iron-rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella-like organism. We used cryo-transmission electron microscopy and cryo-electron tomography to provide unprecedented ultrastructural data on intact cell-mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron-oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history.


Subject(s)
Adaptation, Physiological , Iron/metabolism , Minerals/metabolism , Proteobacteria/metabolism , Chemotaxis , Cryoelectron Microscopy , Microscopy, Electron, Transmission , Oxidation-Reduction , Proteobacteria/ultrastructure
18.
Microbiol Resour Announc ; 10(27): e0017821, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34236218

ABSTRACT

How silicon-rich soil amendments impact the microbial community is unresolved. We report 16S rRNA gene sequencing data from flooded rice paddy mesocosms treated with different silicon amendments sampled over the growing season. We generated 11,678 operational taxonomic units (OTUs) and found that microbial communities were significantly different across treatments, time points, and biospheres.

19.
ISME J ; 15(5): 1271-1286, 2021 05.
Article in English | MEDLINE | ID: mdl-33328652

ABSTRACT

In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lo'ihi Seamount, Hawai'i, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lo'ihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.


Subject(s)
Hydrothermal Vents , Anaerobiosis , Carbon , Denitrification , Ecosystem , Hawaii , Iron , Oxidation-Reduction
20.
Front Microbiol ; 12: 679409, 2021.
Article in English | MEDLINE | ID: mdl-34220764

ABSTRACT

Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The "stalk formation in Zetaproteobacteria" (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.

SELECTION OF CITATIONS
SEARCH DETAIL