Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Commun Biol ; 4(1): 1333, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824367

ABSTRACT

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.


Subject(s)
Epigenesis, Genetic , Genome , Molecular Chaperones/genetics , Neoplasms/genetics , Protein Interaction Mapping , Protein Interaction Maps , Animals , Female , Heterografts , Humans , Mice , Signal Transduction
2.
Nat Commun ; 11(1): 319, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949159

ABSTRACT

Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Proteome/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain Mapping , Cognitive Dysfunction/metabolism , Executive Function/physiology , Female , Hippocampus/pathology , Humans , Male , Memory/physiology , Mice , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL