Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
2.
Nature ; 610(7930): 154-160, 2022 10.
Article in English | MEDLINE | ID: mdl-35952712

ABSTRACT

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Cities/epidemiology , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Humans , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/isolation & purification , Travel/legislation & jurisprudence
3.
Nature ; 600(7889): 506-511, 2021 12.
Article in English | MEDLINE | ID: mdl-34649268

ABSTRACT

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral/genetics , Genomics , SARS-CoV-2/genetics , Amino Acid Substitution , COVID-19/transmission , England/epidemiology , Epidemiological Monitoring , Humans , Molecular Epidemiology , Mutation , Quarantine/statistics & numerical data , SARS-CoV-2/classification , Spatio-Temporal Analysis , Spike Glycoprotein, Coronavirus/genetics
4.
Nature ; 593(7858): 266-269, 2021 05.
Article in English | MEDLINE | ID: mdl-33767447

ABSTRACT

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Subject(s)
COVID-19/transmission , COVID-19/virology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , England/epidemiology , Evolution, Molecular , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Time Factors , Young Adult
5.
N Engl J Med ; 386(4): 340-350, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35021002

ABSTRACT

BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), have been used since December 2020 in the United Kingdom. Real-world data have shown the vaccines to be highly effective against Covid-19 and related severe disease and death. Vaccine effectiveness may wane over time since the receipt of the second dose of the ChAdOx1-S (ChAdOx1 nCoV-19) and BNT162b2 vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic Covid-19 and related hospitalization and death in England. Effectiveness of the ChAdOx1-S and BNT162b2 vaccines was assessed according to participant age and status with regard to coexisting conditions and over time since receipt of the second vaccine dose to investigate waning of effectiveness separately for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants. RESULTS: Vaccine effectiveness against symptomatic Covid-19 with the delta variant peaked in the early weeks after receipt of the second dose and then decreased by 20 weeks to 44.3% (95% confidence interval [CI], 43.2 to 45.4) with the ChAdOx1-S vaccine and to 66.3% (95% CI, 65.7 to 66.9) with the BNT162b2 vaccine. Waning of vaccine effectiveness was greater in persons 65 years of age or older than in those 40 to 64 years of age. At 20 weeks or more after vaccination, vaccine effectiveness decreased less against both hospitalization, to 80.0% (95% CI, 76.8 to 82.7) with the ChAdOx1-S vaccine and 91.7% (95% CI, 90.2 to 93.0) with the BNT162b2 vaccine, and death, to 84.8% (95% CI, 76.2 to 90.3) and 91.9% (95% CI, 88.5 to 94.3), respectively. Greater waning in vaccine effectiveness against hospitalization was observed in persons 65 years of age or older in a clinically extremely vulnerable group and in persons 40 to 64 years of age with underlying medical conditions than in healthy adults. CONCLUSIONS: We observed limited waning in vaccine effectiveness against Covid-19-related hospitalization and death at 20 weeks or more after vaccination with two doses of the ChAdOx1-S or BNT162b2 vaccine. Waning was greater in older adults and in those in a clinical risk group.


Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccine Efficacy , Adolescent , Adult , Age Factors , Aged , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Middle Aged , Patient Acuity , Risk Factors , SARS-CoV-2 , Time Factors , United Kingdom/epidemiology
6.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35172051

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
7.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35249272

ABSTRACT

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , ChAdOx1 nCoV-19/therapeutic use , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/genetics
8.
Am J Respir Crit Care Med ; 209(2): 164-174, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37938162

ABSTRACT

Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.


Subject(s)
Anti-Infective Agents , Respiratory Tract Infections , Humans , Pilot Projects , London , Intensive Care Units , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy
9.
N Engl J Med ; 385(7): 585-594, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34289274

ABSTRACT

BACKGROUND: The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. METHODS: We used a test-negative case-control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike (S) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients' vaccination status. RESULTS: Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. CONCLUSIONS: Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , Treatment Outcome , United Kingdom/epidemiology , Vaccine Potency , Young Adult
10.
N Engl J Med ; 384(6): 533-540, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33369366

ABSTRACT

BACKGROUND: The relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection remains unclear. METHODS: We investigated the incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative health care workers attending testing of asymptomatic and symptomatic staff at Oxford University Hospitals in the United Kingdom. Baseline antibody status was determined by anti-spike (primary analysis) and anti-nucleocapsid IgG assays, and staff members were followed for up to 31 weeks. We estimated the relative incidence of PCR-positive test results and new symptomatic infection according to antibody status, adjusting for age, participant-reported gender, and changes in incidence over time. RESULTS: A total of 12,541 health care workers participated and had anti-spike IgG measured; 11,364 were followed up after negative antibody results and 1265 after positive results, including 88 in whom seroconversion occurred during follow-up. A total of 223 anti-spike-seronegative health care workers had a positive PCR test (1.09 per 10,000 days at risk), 100 during screening while they were asymptomatic and 123 while symptomatic, whereas 2 anti-spike-seropositive health care workers had a positive PCR test (0.13 per 10,000 days at risk), and both workers were asymptomatic when tested (adjusted incidence rate ratio, 0.11; 95% confidence interval, 0.03 to 0.44; P = 0.002). There were no symptomatic infections in workers with anti-spike antibodies. Rate ratios were similar when the anti-nucleocapsid IgG assay was used alone or in combination with the anti-spike IgG assay to determine baseline status. CONCLUSIONS: The presence of anti-spike or anti-nucleocapsid IgG antibodies was associated with a substantially reduced risk of SARS-CoV-2 reinfection in the ensuing 6 months. (Funded by the U.K. Government Department of Health and Social Care and others.).


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Health Personnel , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Immunoglobulin G/blood , Incidence , Longitudinal Studies , Male , Middle Aged , Polymerase Chain Reaction , Recurrence , SARS-CoV-2/isolation & purification , Seroconversion , United Kingdom , Young Adult
11.
BMC Public Health ; 24(1): 1890, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010057

ABSTRACT

BACKGROUND: An outbreak of acute severe hepatitis of unknown aetiology (AS-Hep-UA) in children during 2022 was subsequently linked to infections with adenovirus-associated virus 2 and other 'helper viruses', including human adenovirus. It is possible that evidence of such an outbreak could be identified at a population level based on routine data captured by electronic health records (EHR). METHODS: We used anonymised EHR to collate retrospective data for all emergency presentations to Oxford University Hospitals NHS Foundation Trust in the UK, between 2016-2022, for all ages from 18 months and older. We investigated clinical characteristics and temporal distribution of presentations of acute hepatitis and of adenovirus infections based on laboratory data and clinical coding. We relaxed the stringent case definition adopted during the AS-Hep-UA to identify all cases of acute hepatitis with unknown aetiology (termed AHUA). We compared events within the outbreak period (defined as 1st Oct 2021-31 Aug 2022) to the rest of our study period. RESULTS: Over the study period, there were 903,433 acute presentations overall, of which 391 (0.04%) were classified as AHUA. AHUA episodes had significantly higher critical care admission rates (p < 0.0001, OR = 41.7, 95% CI:26.3-65.0) and longer inpatient admissions (p < 0.0001) compared with the rest of the patient population. During the outbreak period, significantly more adults (≥ 16 years) were diagnosed with AHUA (p < 0.0001, OR = 3.01, 95% CI: 2.20-4.12), and there were significantly more human adenovirus (HadV) infections in children (p < 0.001, OR = 1.78, 95% CI:1.27-2.47). There were also more HAdV tests performed during the outbreak (p < 0.0001, OR = 1.27, 95% CI:1.17-1.37). Among 3,707 individuals who were tested for HAdV, 179 (4.8%) were positive. However, there was no evidence of more acute hepatitis or increased severity of illness in HadV-positive compared to negative cases. CONCLUSIONS: Our results highlight an increase in AHUA in adults coinciding with the period of the outbreak in children, but not linked to documented HAdV infection. Tracking changes in routinely collected clinical data through EHR could be used to support outbreak surveillance.


Subject(s)
Disease Outbreaks , Electronic Health Records , Humans , Electronic Health Records/statistics & numerical data , Retrospective Studies , Male , Adult , Female , Adolescent , Young Adult , Middle Aged , Acute Disease , Child , Aged , England/epidemiology , Infant , Child, Preschool , United Kingdom/epidemiology
12.
Euro Surveill ; 29(3)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240057

ABSTRACT

Under International Health Regulations from 2005, a human infection caused by a novel influenza A virus variant is considered an event that has potential for high public health impact and is immediately notifiable to the World Health Organisation. We here describe the clinical, epidemiological and virological features of a confirmed human case of swine influenza A(H1N2)v in England detected through community respiratory virus surveillance. Swabbing and contact tracing helped refine public health risk assessment, following this unusual and unexpected finding.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Swine , Influenza A Virus, H1N2 Subtype , Influenza A Virus, H1N1 Subtype/genetics , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , England/epidemiology
13.
Emerg Infect Dis ; 29(1): 184-188, 2023 01.
Article in English | MEDLINE | ID: mdl-36454718

ABSTRACT

Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections and delected Omicron subvariant waves emergence contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.


Subject(s)
COVID-19 , Humans , Animals , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , United Kingdom/epidemiology , Health Personnel , Reinfection , Urodela
14.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35305296

ABSTRACT

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
15.
J Antimicrob Chemother ; 78(Suppl 2): ii37-ii42, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37995354

ABSTRACT

The COVID-19 pandemic saw unprecedented resources and funds driven into research for the development, and subsequent rapid distribution, of vaccines, diagnostics and directly acting antivirals (DAAs). DAAs have undeniably prevented progression and life-threatening conditions in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, there are concerns of antimicrobial resistance (AMR), antiviral resistance specifically, for DAAs. To preserve activity of DAAs for COVID-19 therapy, as well as detect possible mutations conferring resistance, antimicrobial stewardship and surveillance were rapidly implemented in England. This paper expands on the ubiquitous ongoing public health activities carried out in England, including epidemiologic, virologic and genomic surveillance, to support the stewardship of DAAs and assess the deployment, safety, effectiveness and resistance potential of these novel and repurposed therapeutics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Anti-Bacterial Agents/therapeutic use , Pandemics/prevention & control , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Drug Resistance, Bacterial , England/epidemiology
16.
Epidemiol Infect ; 151: e169, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37726109

ABSTRACT

Whole-genome sequencing (WGS) information has played a crucial role in the SARS-CoV-2 (COVID-19) pandemic by providing evidence about variants to inform public health policy. The purpose of this study was to assess the representativeness of sequenced cases compared with all COVID-19 cases in England, between March 2020 and August 2021, by demographic and socio-economic characteristics, to evaluate the representativeness and utility of these data in epidemiological analyses. To achieve this, polymerase chain reaction (PCR)-confirmed COVID-19 cases were extracted from the national laboratory system and linked with WGS data. During the study period, over 10% of COVID-19 cases in England had WGS data available for epidemiological analysis. With sequencing capacity increasing throughout the period, sequencing representativeness compared to all reported COVID-19 cases increased over time, allowing for valuable epidemiological analyses using demographic and socio-economic characteristics, particularly during periods with emerging novel SARS-CoV-2 variants. This study demonstrates the comprehensiveness of England's sequencing throughout the COVID-19 pandemic, rapidly detecting variants of concern, and enabling representative epidemiological analyses to inform policy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Pandemics , England/epidemiology
18.
Euro Surveill ; 28(39)2023 Sep.
Article in English | MEDLINE | ID: mdl-37768561

ABSTRACT

We investigated an outbreak of SARS-CoV-2 variant BA.2.86 in an East of England care home. We identified 45 infections (33 residents, 12 staff), among 38 residents and 66 staff. Twenty-nine of 43 PCR swabs were sequenced, all of which were variant BA.2.86. The attack rate among residents was 87%, 19 were symptomatic, and one was hospitalised. Twenty-four days after the outbreak started, no cases were still unwell. Among the 33 resident cases, 29 had been vaccinated 4 months earlier.

19.
J Infect Dis ; 226(5): 808-811, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35184201

ABSTRACT

To investigate if the AY.4.2 sublineage of the SARS-CoV-2 delta variant is associated with hospitalization and mortality risks that differ from non-AY.4.2 delta risks, we performed a retrospective cohort study of sequencing-confirmed COVID-19 cases in England based on linkage of routine health care datasets. Using stratified Cox regression, we estimated adjusted hazard ratios (aHR) of hospital admission (aHR = 0.85; 95% confidence interval [CI], .77-.94), hospital admission or emergency care attendance (aHR = 0.87; 95% CI, .81-.94), and COVID-19 mortality (aHR = 0.85; 95% CI, .71-1.03). The results indicate that the risks of hospitalization and mortality are similar or lower for AY.4.2 compared to cases with other delta sublineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitalization , Humans , Retrospective Studies
20.
J Infect Dis ; 225(8): 1367-1376, 2022 04 19.
Article in English | MEDLINE | ID: mdl-32880628

ABSTRACT

BACKGROUND: The largest West African monkeypox outbreak began September 2017, in Nigeria. Four individuals traveling from Nigeria to the United Kingdom (n = 2), Israel (n = 1), and Singapore (n = 1) became the first human monkeypox cases exported from Africa, and a related nosocomial transmission event in the United Kingdom became the first confirmed human-to-human monkeypox transmission event outside of Africa. METHODS: Epidemiological and molecular data for exported and Nigerian cases were analyzed jointly to better understand the exportations in the temporal and geographic context of the outbreak. RESULTS: Isolates from all travelers and a Bayelsa case shared a most recent common ancestor and traveled to Bayelsa, Delta, or Rivers states. Genetic variation for this cluster was lower than would be expected from a random sampling of genomes from this outbreak, but data did not support direct links between travelers. CONCLUSIONS: Monophyly of exportation cases and the Bayelsa sample, along with the intermediate levels of genetic variation, suggest a small pool of related isolates is the likely source for the exported infections. This may be the result of the level of genetic variation present in monkeypox isolates circulating within the contiguous region of Bayelsa, Delta, and Rivers states, or another more restricted, yet unidentified source pool.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Nigeria/epidemiology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL