Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929330

ABSTRACT

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Subject(s)
Autism Spectrum Disorder , Muscular Dystrophies , Muscular Dystrophy, Duchenne , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Base Sequence , Chromosome Inversion/genetics , Dystrophin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophy, Duchenne/genetics , POU Domain Factors/genetics
2.
Hum Mutat ; 43(6): 765-771, 2022 06.
Article in English | MEDLINE | ID: mdl-35181961

ABSTRACT

The use of whole-genome sequencing (WGS) has accelerated the pace of gene discovery and highlighted the need for open and collaborative data sharing in the search for novel disease genes and variants. GeneMatcher (GM) is designed to facilitate connections between researchers, clinicians, health-care providers, and others to help in the identification of additional patients with variants in the same candidate disease genes. The Illumina Clinical Services Laboratory offers a WGS test for patients with suspected rare and undiagnosed genetic disease  and regularly submits potential candidate genes to GM to strengthen gene-disease relationships. We describe our experience with GM, including criteria for evaluation of candidate genes, and our workflow for the submission and review process. We have made 69 submissions, 36 of which are currently active. Ten percent of submissions have resulted in publications, with an additional 14 submissions part of ongoing collaborations and expected to result in a publication.


Subject(s)
High-Throughput Nucleotide Sequencing , Laboratories, Clinical , Humans , Whole Genome Sequencing
3.
Hum Mutat ; 39(2): 281-291, 2018 02.
Article in English | MEDLINE | ID: mdl-29193635

ABSTRACT

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Subject(s)
Bone and Bones/physiology , Heart/physiology , Proteins/genetics , Animals , Blotting, Western , Bone and Bones/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line , Exome/genetics , Female , HeLa Cells , Humans , Male , Whole Genome Sequencing , Zebrafish
4.
J Cell Sci ; 129(23): 4399-4410, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27777264

ABSTRACT

Gap junction proteins (connexins) have crucial effects on cell motility in many systems, from migration of neural crest cells to promotion of metastatic invasiveness. Here, we show that expression of Cx26 (also known as GJB2) in HeLa cells specifically enhances cell motility in scrape wounding and sparse culture models. This effect is dependent on gap junction channels and is isotype specific [Cx26 enhances motility, whereas Cx43 (also known as GJA1) does not and Cx32 (also known as GJB1) has an intermediate effect]. The increased motility is associated with reduced cell adhesiveness, caused by loss of N-cadherin protein and RNA at the wound edge. This in turn causes a redistribution of N-cadherin-binding proteins (p120 catenin and ß-catenin) to the cytosol and nucleus, respectively. The former activates Rac-1, which mediates cytoskeletal rearrangements needed for filopod extension. The latter is associated with increased expression of urokinase plasminogen activating receptor (an activator of extracellular proteases) and secretion of extracellular matrix components like collagen. Although these effects were dependent on Cx26-mediated coupling of the cells, they are not mediated by the same signal (i.e. cAMP) through which Cx26 has been shown to suppress proliferation in the same system.


Subject(s)
Cell Movement , Connexin 26/metabolism , Cadherins/metabolism , Cell Adhesion , Coculture Techniques , Cyclic AMP/metabolism , Gap Junctions/metabolism , HeLa Cells , Humans , Mitosis , Models, Biological , Protein Binding , Transfection , Wound Healing
5.
Eur J Hum Genet ; 32(6): 665-672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565640

ABSTRACT

Currently, there are no widely accepted recommendations in the genomics field guiding the return of incidental findings (IFs), defined here as unexpected results that are unrelated to the indication for testing. Consequently, reporting policies for IFs among laboratories offering genomic testing are variable and may lack transparency. Herein we describe a framework developed to guide the evaluation and return of IFs encountered in probands undergoing clinical genome sequencing (cGS). The framework prioritizes clinical significance and actionability of IFs and follows a stepwise approach with stopping points at which IFs may be recommended for return or not. Over 18 months, implementation of the framework in a clinical laboratory facilitated the return of actionable IFs in 37 of 720 (5.1%) individuals referred for cGS, which is reduced to 3.1% if glucose-6-phosphate dehydrogenase (G6PD) deficiency is excluded. This framework can serve as a model to standardize reporting of IFs identified during genomic testing.


Subject(s)
Genetic Testing , Incidental Findings , Humans , Genetic Testing/standards , Genetic Testing/methods , Genomics/standards , Genomics/methods
6.
Cell Biochem Funct ; 30(2): 89-100, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22392438

ABSTRACT

Hemichannels, which are one half of the gap junction channels, have independent physiological roles. Although hemichannels consisting of connexins are more widely documented, hemichannels of pannexins, proteins homologous to invertebrate gap junction proteins also have been studied. There are at least 21 different connexin and three pannexin isotypes. This variety in isotypes results in tissue-specific hemichannels, which have been implicated in varied events ranging from development, cell survival, to cell death. Hemichannel function varies with its spatio-temporal opening, thus demanding a refined degree of regulation. This review discusses the activity of hemichannels and the molecules released in different physiological states and their impact on tissue functioning.


Subject(s)
Connexins/metabolism , Gap Junctions/metabolism , Growth and Development , Animals , Cell Death , Humans
7.
PLoS One ; 8(12): e82335, 2013.
Article in English | MEDLINE | ID: mdl-24312655

ABSTRACT

Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations.


Subject(s)
Connexins/metabolism , Cyclic AMP/metabolism , Cell Cycle/physiology , Cell Proliferation/physiology , Connexin 26 , Connexin 43/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HeLa Cells , Humans , Gap Junction beta-1 Protein
8.
J Biol Chem ; 281(12): 7994-8009, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16407179

ABSTRACT

Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the alpha- and beta-connexin subgroups but not the gamma-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.


Subject(s)
Cell Membrane/metabolism , Connexins/chemistry , Connexins/genetics , Mutation , Threonine/chemistry , Amino Acid Sequence , Animals , Baculoviridae/metabolism , Cell Line , Connexin 26 , Connexin 43/genetics , Cryoelectron Microscopy , Cysteine/chemistry , Cytoplasm/metabolism , DNA, Complementary/metabolism , Electrophysiology , Fluorescent Dyes/pharmacology , Gap Junctions , Genes, Dominant , HeLa Cells , Humans , Image Processing, Computer-Assisted , Insecta , Keratinocytes/metabolism , Light , Microscopy, Electron , Microscopy, Fluorescence , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/metabolism , Oxygen/metabolism , Phylogeny , Point Mutation , RNA, Complementary/metabolism , Rats , Time Factors , Transfection , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL