ABSTRACT
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , RabbitsABSTRACT
BACKGROUND: Chronic spontaneous urticaria (CSU) is a dermatologic condition characterized by spontaneous, pruritic hives and/or angioedema that persists for 6 weeks or longer with no identifiable trigger. Antihistamines and second-line therapies such as omalizumab are effective for some CSU patients, but others remain symptomatic, with significant impact on quality of life. This variable response to treatment and autoantibody levels across patients highlight clinically heterogeneous subgroups. OBJECTIVE: We aimed to highlight pathways involved in CSU by investigating the genetics of CSU risk and subgroups. METHODS: We performed a genome-wide association study (GWAS) of 679 CSU patients and 4446 controls and a GWAS of chronic urticaria (CU)-index, which measures IgG autoantibodies levels, by comparing 447 CU index-low to 183 CU index-high patients. We also tested whether polygenic scores for autoimmune-related disorders were associated with CSU risk and CU index. RESULTS: We identified 2 loci significantly associated with disease risk. The strongest association mapped to position 56 of HLA-DQA1 (P = 1.69 × 10-9), where the arginine residue was associated with increased risk (odds ratio = 1.64). The second association signal colocalized with expression-quantitative trait loci for ITPKB in whole blood (Pcolocalization = .997). The arginine residue at position 56 of HLA-DQA1 was also associated with increased risk of CU index-high (P = 6.15 × 10-5, odds ratio = 1.86), while the ITKPB association was not (P = .64). Polygenic scores for 3 autoimmune-related disorders (hypothyroidism, type 1 diabetes, and vitiligo) were associated with CSU risk and CU index (P < 2.34 × 10-3, odds ratio > 1.72). CONCLUSION: A GWAS of CSU identified 2 genome-wide significant loci, highlighting the shared genetics between CU index and autoimmune disorders.
Subject(s)
Chronic Urticaria , Urticaria , Humans , Genome-Wide Association Study , Quality of Life , Chronic Disease , Chronic Urticaria/genetics , Urticaria/genetics , Urticaria/chemically induced , Omalizumab/adverse effectsABSTRACT
Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.
Subject(s)
Computer Simulation , HLA Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Immunogenetics/methods , Polymorphism, Single Nucleotide , Receptors, KIR/genetics , Alleles , Gene Frequency , Genotype , Genotyping Techniques/methods , Haplotypes , Humans , Phenotype , Exome Sequencing/methods , Whole Genome Sequencing/methodsABSTRACT
Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Angiopoietin-2 , Critical Illness , Pandemics , PrognosisABSTRACT
INTRODUCTION: We present the challenges and nuances of management in a rare case of multiple migrating intracranial fragments after pediatric gunshot wound to the head (GSWH). CASE PRESENTATION: A 13-year-old girl suffered left parietal GSWH, with new neurologic decline 3 days after initial debridement. Serial imaging showed the largest intracranial fragments had migrated into the left trigone, and descended further with head of bed (HOB) elevation. HOB was iteratively decreased, with concurrent intracranial pressure monitoring. After extubation, with an alert and stable neurologic exam, HOB was decreased to -15 degrees, allowing gravity-assisted migration of the fragments to an anatomically favorable position within the left occipital horn. The patient underwent occipital craniotomy for fragment retrieval on hospital day 27. Two large and >20 smaller fragments were retrieved using neuronavigation and intraoperative ultrasound. Forensics showed these to be .45 caliber handgun bullet fragments. The patient recovered well after 2-months of intensive inpatient rehabilitation. DISCUSSION: During new neurologic decline after GSWH, bullet migration must be considered and serial cranial imaging is requisite. Surgical retrieval of deep fragments requires judicious planning to minimize further injury. Tightly controlled HOB adjustments with gravity assistance for repositioning of fragments may have utility in optimizing anatomic favorability prior to surgery.
Subject(s)
Brain Injuries , Foreign-Body Migration , Head Injuries, Penetrating , Wounds, Gunshot , Adolescent , Brain , Child , Female , Foreign-Body Migration/diagnostic imaging , Foreign-Body Migration/etiology , Foreign-Body Migration/surgery , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/surgery , Humans , Wounds, Gunshot/complications , Wounds, Gunshot/diagnostic imaging , Wounds, Gunshot/surgeryABSTRACT
INTRODUCTION: The benefits of performing open and endovascular procedures in a hybrid neuroangiography surgical suite include confirmation of treatment results and reduction in number of procedures, leading to improved efficiency of care. Combined procedural suites are infrequently used in pediatric facilities due to technical and logistical limitations. We report the safety, utility, and lessons learned from a single-institution experience using a hybrid suite equipped with biplane rotational digital subtraction angiography and pan-surgical capabilities. METHODS: We conducted a retrospective review of consecutive cases performed at our institution that utilized the hybrid neuroangiography surgical suite from February 2020 to August 2021. Demographics, surgical metrics, and imaging results were collected from the electronic medical record. Outcomes, interventions, and nuances for optimizing preoperative/intraoperative setup and postoperative care were presented. RESULTS: Eighteen procedures were performed in 17 patients (mean age 13.4 years, range 6-19). Cases included 14 arteriovenous malformations (AVM; 85.7% ruptured), one dural arteriovenous fistula, one mycotic aneurysm, and one hemangioblastoma. The average operative time was 416 min (range 321-745). There were no intraoperative or postoperative complications. All patients were alive at follow-up (range 0.1-14.7 months). Five patients had anticipated postoperative deficits arising from their hemorrhage, and 12 returned to baseline neurological status. Four illustrative cases demonstrating specific, unique applications of the hybrid angiography suite are presented. CONCLUSION: The hybrid neuroangiography surgical suite is a safe option for pediatric cerebrovascular pathologies requiring combined surgical and endovascular intervention. Hybrid cases can be completed within the same anesthesia session and reduce the need for return to the operating room for resection or surveillance angiography. High-quality intraoperative angiography enables diagnostic confirmation under a single procedure, mitigating risk of morbidity and accelerating recovery. Effective multidisciplinary planning enables preoperative angiograms to be completed to inform the operative plan immediately prior to definitive resection.
Subject(s)
Central Nervous System Vascular Malformations , Endovascular Procedures , Neurosurgery , Adolescent , Adult , Angiography, Digital Subtraction , Central Nervous System Vascular Malformations/surgery , Child , Endovascular Procedures/methods , Humans , Neurosurgical Procedures , Young AdultABSTRACT
The gene GPNMB is known to play roles in phagocytosis and tissue repair, and is upregulated in microglia in many mouse models of neurodegenerative disease as well as in human patients. Nearby genomic variants are associated with both elevated Parkinson's disease (PD) risk and higher expression of this gene, suggesting that inhibiting GPNMB activity might be protective in Parkinson's disease. We tested this hypothesis in three different mouse models of neurological diseases: a remyelination model and two models of alpha-synuclein pathology. We found that Gpnmb deletion had no effect on histological, cellular, behavioral, neurochemical or gene expression phenotypes in any of these models. These data suggest that Gpnmb does not play a major role in the development of pathology or functional defects in these models and that further work is necessary to study its role in the development or progression of Parkinson's disease.
Subject(s)
Eye Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Parkinson Disease/metabolism , Remyelination/genetics , Substantia Nigra/metabolism , Synucleinopathies/genetics , Aged , Aged, 80 and over , Animals , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mice , Mice, Knockout , Parkinson Disease/pathology , Substantia Nigra/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathologyABSTRACT
OBJECTIVE: In 2008, a Women in Neurosurgery Committee white paper called for increased women applicants and decreased women's attrition in neurosurgery. However, contributing factors (work-life balance, lack of female leadership, workplace gender inequality) have not been well characterized; therefore, specific actions cannot be implemented to improve these professional hurdles. This study provides an update on the experiences of neurosurgeons in 2020 with these historical challenges. METHODS: An anonymous online survey was sent to all Accreditation Council for Graduate Medical Education (ACGME)-accredited US neurosurgical programs, examining demographics and experiences with mentorship, family life, fertility, and workplace conduct. RESULTS: A total of 115 respondents (64 men, 51 women; age range 25-67 years) had trained at 49 different US residencies. Mentorship rates were very high among men and women in medical school and residency. However, women were significantly more likely than men to have a female mentor in residency. During residency, 33% of women versus 44% of men had children, and significantly fewer women interested in having a child were able to do so in residency, compared to men. Significantly more women than men had a child only during a nonclinical year (56.3% vs 19.0%, respectively). Thirty-nine percent of women and 25% of men reported difficulty conceiving. The major difficulty for men was stress, whereas women reported the physical challenges of pregnancy itself (workplace teratogens, morning sickness, etc.). Failed birth rates peaked during residency (0.33) versus those before (0.00) and after residency (0.25).Women (80%) experience microaggressions in the workplace significantly more than men (36%; p < 0.001). Ninety-five percent of macro-/microaggressions toward female neurosurgeons were about their gender, compared to 9% of those toward men (p < 0.001). The most common overall perpetrators were senior male residents and attendings, followed by male patients (against women) and female nurses or midlevel providers (against men). CONCLUSIONS: Accurate depictions of neurosurgery experiences and open discussions of the potential impacts of gender may allow for 1) decreased attrition due to more accurate expectations and 2) improved characterization of gender differences in neurosurgery so the profession can work to address gender inequality.
Subject(s)
Internship and Residency , Neurosurgery , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Neurosurgeons , Neurosurgery/education , Pregnancy , Sex Education , WorkplaceABSTRACT
INTRODUCTION: Tumor-associated intracranial aneurysms are rare and not well understood. CASE PRESENTATION: We describe a 4-year-old female with multiple intracranial aneurysms intimately associated with a suprasellar germ cell tumor (GCT). We provide the clinical history, medical, and surgical treatment course, as well as a comprehensive and concise synthesis of the literature on tumor-associated aneurysms. DISCUSSION: We discuss mechanisms for aneurysm formation with relevance to the current case, including cellular and paracrine signaling pertinent to suprasellar GCTs and possible molecular pathways involved. We review the complex multidisciplinary treatment required for complex tumor and cerebrovascular interactions.
Subject(s)
Intracranial Aneurysm , Neoplasms, Germ Cell and Embryonal , Pituitary Neoplasms , Child, Preschool , Female , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/etiology , Intracranial Aneurysm/surgery , Neoplasms, Germ Cell and Embryonal/diagnostic imaging , Neoplasms, Germ Cell and Embryonal/surgeryABSTRACT
In clinical trials, a placebo response refers to improvement in disease symptoms arising from the psychological effect of receiving a treatment rather than the actual treatment under investigation. Previous research has reported genomic variation associated with the likelihood of observing a placebo response, but these studies have been limited in scope and have not been validated. Here, we analyzed whole-genome sequencing data from 784 patients undergoing placebo treatment in Phase III Asthma or Rheumatoid Arthritis trials to assess the impact of previously reported variation on patient outcomes in the placebo arms and to identify novel variants associated with the placebo response. Contrary to expectations based on previous reports, we did not observe any statistically significant associations between genomic variants and placebo treatment outcome. Our findings suggest that the biological origin of the placebo response is complex and likely to be variable between disease areas.
Subject(s)
Clinical Trials, Phase III as Topic/standards , Placebo Effect , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Asthma/drug therapy , Asthma/genetics , Female , Genome-Wide Association Study , Humans , Male , Middle AgedABSTRACT
Motivation: We have developed geneAttribution, an R package that assigns candidate causal gene(s) to a risk variant identified by a genetic association study such as a GWAS. The method combines user-supplied functional annotation such as expression quantitative trait loci (eQTL) or Hi-C genome conformation data and reports the most likely candidate genes. In the absence of annotation data, geneAttribution relies on the distances between the genes and the input variant. Availability and Implementation: The package is freely available from http://www.bioconductor.org/ . A quick-start vignette is included with the package. Contact: wustera@gene.com.
Subject(s)
Genetic Association Studies/methods , Polymorphism, Genetic , Promoter Regions, Genetic , Software , Genome, Human , Humans , Phenotype , Quantitative Trait LociABSTRACT
We describe a case of apparent mineralocorticoid excess (AME) secondary to posaconazole therapy and suggest the biochemical mechanism. Clinical and laboratory investigation confirmed 11ß-hydroxysteroid dehydrogenase inhibition and withholding therapy led to a resolution of all clinical and laboratory abnormalities. Posaconazole was later restarted at a lower dose and prevented recurrence of this syndrome. Additional studies are necessary to determine the frequency of posaconazole-induced AME and whether other azole antifungals can be associated with this phenomenon.
Subject(s)
11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Antifungal Agents/adverse effects , Hypertension/chemically induced , Hypokalemia/chemically induced , Mineralocorticoid Excess Syndrome, Apparent/chemically induced , Triazoles/adverse effects , Aged , Antifungal Agents/therapeutic use , Cortisone/blood , Humans , Hydrocortisone/blood , Lung/microbiology , Lung/pathology , Male , Pulmonary Aspergillosis/drug therapy , Triazoles/therapeutic useABSTRACT
Human populations have experienced dramatic growth since the Neolithic revolution. Recent studies that sequenced a very large number of individuals observed an extreme excess of rare variants and provided clear evidence of recent rapid growth in effective population size, although estimates have varied greatly among studies. All these studies were based on protein-coding genes, in which variants are also impacted by natural selection. In this study, we introduce targeted sequencing data for studying recent human history with minimal confounding by natural selection. We sequenced loci far from genes that meet a wide array of additional criteria such that mutations in these loci are putatively neutral. As population structure also skews allele frequencies, we sequenced 500 individuals of relatively homogeneous ancestry by first analyzing the population structure of 9,716 European Americans. We used very high coverage sequencing to reliably call rare variants and fit an extensive array of models of recent European demographic history to the site frequency spectrum. The best-fit model estimates â¼ 3.4% growth per generation during the last â¼ 140 generations, resulting in a population size increase of two orders of magnitude. This model fits the data very well, largely due to our observation that assumptions of more ancient demography can impact estimates of recent growth. This observation and results also shed light on the discrepancy in demographic estimates among recent studies.
Subject(s)
Genetic Variation , Models, Genetic , Population Growth , Base Sequence , Genetics, Population , Humans , Molecular Sequence Data , Principal Component Analysis , Sequence Analysis, DNA , United States , White People/geneticsABSTRACT
Genome-wide association studies (GWASs) have recently revealed many genetic associations that are shared between different diseases. We propose a method, disPCA, for genome-wide characterization of shared and distinct risk factors between and within disease classes. It flips the conventional GWAS paradigm by analyzing the diseases themselves, across GWAS datasets, to explore their "shared pathogenetics". The method applies principal component analysis (PCA) to gene-level significance scores across all genes and across GWASs, thereby revealing shared pathogenetics between diseases in an unsupervised fashion. Importantly, it adjusts for potential sources of heterogeneity present between GWAS which can confound investigation of shared disease etiology. We applied disPCA to 31 GWASs, including autoimmune diseases, cancers, psychiatric disorders, and neurological disorders. The leading principal components separate these disease classes, as well as inflammatory bowel diseases from other autoimmune diseases. Generally, distinct diseases from the same class tend to be less separated, which is in line with their increased shared etiology. Enrichment analysis of genes contributing to leading principal components revealed pathways that are implicated in the immune system, while also pointing to pathways that have yet to be explored before in this context. Our results point to the potential of disPCA in going beyond epidemiological findings of the co-occurrence of distinct diseases, to highlighting novel genes and pathways that unsupervised learning suggest to be key players in the variability across diseases.
Subject(s)
Computational Biology/methods , Genome-Wide Association Study/methods , Principal Component Analysis/methods , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Cluster Analysis , Computer Simulation , Databases, Genetic , Humans , Risk FactorsABSTRACT
XWAS is a new software suite for the analysis of the X chromosome in association studies and similar genetic studies. The X chromosome plays an important role in human disease and traits of many species, especially those with sexually dimorphic characteristics. Special attention needs to be given to its analysis due to the unique inheritance pattern, which leads to analytical complications that have resulted in the majority of genome-wide association studies (GWAS) either not considering X or mishandling it with toolsets that had been designed for non-sex chromosomes. We hence developed XWAS to fill the need for tools that are specially designed for analysis of X. Following extensive, stringent, and X-specific quality control, XWAS offers an array of statistical tests of association, including: 1) the standard test between a SNP (single nucleotide polymorphism) and disease risk, including after first stratifying individuals by sex, 2) a test for a differential effect of a SNP on disease between males and females, 3) motivated by X-inactivation, a test for higher variance of a trait in heterozygous females as compared with homozygous females, and 4) for all tests, a version that allows for combining evidence from all SNPs across a gene. We applied the toolset analysis pipeline to 16 GWAS datasets of immune-related disorders and 7 risk factors of coronary artery disease, and discovered several new X-linked genetic associations. XWAS will provide the tools and incentive for others to incorporate the X chromosome into GWAS and similar studies in any species with an XX/XY system, hence enabling discoveries of novel loci implicated in many diseases and in their sexual dimorphism.
Subject(s)
Chromosomes, Human, X/genetics , Genome-Wide Association Study/methods , Software , Female , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , X Chromosome InactivationABSTRACT
Background: Many disorders of gut-brain interaction (DGBIs) are more prevalent in women than men and feature alterations in gastrointestinal motility and bile acid homeostasis. Mechanisms by which bile acids regulate gastrointestinal motility are poorly characterized. We recently validated an adapted tissue bath technique using everted mouse ileum, which revealed differential contractile responses to ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA). Here, we aimed to determine whether these responses are dependent on host sex, the plasma membrane bile acid receptor TGR5, or the apical sodium-dependent bile acid transporter ASBT. Methods: Ileal segments from male and female mice were everted and suspended in tissue baths. Contractile responses to physiologic concentrations of UDCA and DCA were quantified with or without TGR5 or ASBT inhibitors. Phosphorylation of extracellular signal-regulated kinase (ERK) and myosin light chain (MLC), markers of TGR5 activation and smooth muscle contraction, respectively, were assessed with western blot. Results: There were no sex differences in the dose-dependent contractile responses to bile acids. At 100 µmol/L, UDCA but not DCA increased MLC phosphorylation and increased contractility. TGR5 inhibition decreased ERK phosphorylation and led to decreases in contractility, phosphorylated MLC, and surprisingly, total MLC. ASBT inhibition did not affect contractile responses. Conclusion: Differential effects of UDCA and DCA on ileal smooth muscle contractility are not dependent on host sex or ASBT-mediated transport. Bile acids signal through mucosal TGR5, which regulates smooth muscle contractility by complex mechanisms. Understanding how bile acids differentially regulate gastrointestinal motility could facilitate new therapeutic options for specific DGBIs.
ABSTRACT
Bile acids regulate gastrointestinal motility by mechanisms that are poorly understood. Standard isolated tissue bath assays might not recapitulate in vivo physiology if contractile responses to certain bile acids require direct application to the intestinal mucosa. We sought to determine the feasibility of quantifying longitudinal smooth muscle contractile responses to bile acids from intact segments of everted mouse ileum. Ileum from adult female C57BL/6J mice was isolated, gently everted over a notched metal rod, and mounted in tissue baths. Individual bile acids and agonists of bile acid receptors were added to the baths, and longitudinal smooth muscle contractile responses were quantified by isometric force transduction. Ursodeoxycholic acid robustly increased contractile responses in a dose-dependent manner. Deoxycholic acid stimulated contractility at low doses but inhibited contractility at high doses. Chenodeoxycholic acid, glycocholic acid, and lithocholic acid did not alter contractility. The dose-dependent increase in contractility resulting from the application of ursodeoxycholic acid was recapitulated by INT-777, an agonist of the Takeda G protein-coupled receptor 5 (TGR5), and by cevimeline, a muscarinic acetylcholine receptor agonist. Agonists to the nuclear receptors farnesoid X receptor, glucocorticoid receptor, pregnane X receptor, vitamin D receptor, and to the plasma membrane epidermal growth factor receptor did not modify baseline contractile patterns. These results demonstrate that gentle eversion of intact mouse ileum facilitates the quantification of longitudinal smooth muscle contractile responses to individual bile acids. Prokinetic effects of ursodeoxycholic acid and low-dose deoxycholic acid are replicated by agonists to TGR5 and muscarinic acetylcholine receptors.
ABSTRACT
Internationally, the United States (U.S.) cites the highest cost burden of low back pain (LBP). The cost continues to rise, faster than the rate of inflation and overall growth of health expenditures. We performed a comprehensive literature review of peer-reviewed and non- peer-reviewed literature from PubMed, Scopus, and Google Scholar for contemporary data on prevalence, cost, and projected future costs. Policymakers in the U.S. have long attempted to address the high-cost burden of LBP through limiting low-value services and early imaging. Despite these efforts, costs (~$40 billion; ~$2,000/patient/yr) continue to rise with increasing rates of unindicated imaging, high rates of surgery, and subsequent revision surgery without proper trial of non-pharmacologic measures and no corresponding reduction in LBP prevalence. Globally, the overall prevalence of LBP continues to rise largely secondary to a growing aging population. Cost containment methods should focus on careful and comprehensive clinical assessment of patients to better understand when more resource-intensive interventions are indicated.
ABSTRACT
OBJECTIVE: Neuroblastoma with spinal involvement accounts for up to 30% of pediatric spinal tumors and can cause profound neurological deficits. Chemotherapy is the preferred treatment option, but in select patients resection may be indicated. The goal of this study was to identify preoperative factors that led to early surgical intervention, with a specific emphasis on identifying differences on long-term neurological function and spinal deformity in the recent treatment era. METHODS: A retrospective chart review was performed on all children diagnosed with neuroblastoma at a single institution from 2007 to 2020. Patient demographics, symptoms (motor deficit and sphincter dysfunction), and tumor characteristics (e.g., 123I metaiodobenzylguanidine [MIBG] avidity, MYCN amplification, chromosomal abnormality, pathology, catecholamine secretion, and stage) were recorded. Spine involvement included neural or vertebral extension, spinal cord compression, and/or T2 signal change on MRI. Survival, neurological status (motor deficit, sphincter dysfunction), and spine deformity at last follow-up were compared using univariate and multivariate analyses. The variables that contributed to neurological and deformity outcome were assessed with binomial logistic and linear regression models using R software. RESULTS: Seventy-seven of the 160 patients with neuroblastoma had spinal neuroblastoma, meaning either bone metastases alone (n = 43) or intraspinal extension with or without neurological deficit (n= 34). Most patients with spinal neuroblastoma were treated with chemotherapy and/or radiation therapy (97% and 57%, respectively). Resection of the spinal tumor was performed in 14 (18%) patients, all of whom also received chemotherapy. Between the surgical and nonsurgical patients, no baseline demographic differences were found. However, surgical patients were more likely to present with either motor deficits (50% vs 5%, p = 0.0011) or bladder/bowel dysfunction (14% vs 0%, p 0.035), and a shorter median time to onset of neurological symptoms (33 vs 80 days, p = 0.0096). Surgical patients also had a significantly shorter median overall survival (33.0 vs 54 months, p = 0.014). Of the 14 patients who underwent spine surgery, 2 patients underwent surgery at the time of diagnosis while the remaining 12 underwent initial chemotherapy followed later by resection. The 2 patients who underwent initial surgery had excellent outcomes, with neither long-term motor or bowel/bladder deficits nor spinal deformity. CONCLUSIONS: Surgical patients had shorter overall survival. However, the 2 patients with radiographic evidence of cord compression and acute neurological symptom onset who underwent initial, immediate surgery within 3 days of diagnosis had fewer long-term neurological deficits than surgical patients who underwent initial trials of chemotherapy. Thus, acute decompression may provide benefit in carefully selected patients with acute neurological deficits and cord compression on imaging.