Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598070

ABSTRACT

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Subject(s)
Cachexia , Forkhead Box Protein O3 , Muscular Diseases , Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Wasting Syndrome , Cachexia/etiology , Cachexia/metabolism , Cachexia/therapy , Muscular Diseases/etiology , Muscular Diseases/metabolism , Muscular Diseases/therapy , Neoplasms/complications , Metabolic Networks and Pathways , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Wasting Syndrome/etiology , Wasting Syndrome/metabolism , Wasting Syndrome/therapy , Animals , Disease Models, Animal , Mice , Cell Line , Male , Mice, Inbred BALB C , Gene Expression Profiling
2.
Cell Commun Signal ; 22(1): 262, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715122

ABSTRACT

Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.


Subject(s)
Autoimmune Diseases , Dendritic Cells , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Dendritic Cells/immunology , Gene Editing/methods , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL