Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284994

ABSTRACT

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

2.
Small ; : e2400564, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368264

ABSTRACT

Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2 O2 ) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like S─C─N motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2 O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1  h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective S─C─N motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2 O2 , thereby promoting the intrinsic activity of 2e-ORR.

3.
Phys Chem Chem Phys ; 26(25): 17561-17568, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869486

ABSTRACT

Chromium(III)-doped zinc gallate (CZGO) is one of the representative persistent luminescent phosphors emitting in the near-infrared (NIR) region. The emission wavelength it covers falls in the tissue-transparent window, making CZGO a promising optical probe for various biomedical applications. The PersL mechanism dictates that such a phenomenon is only profound in large crystals, so the preparation of CZGO with sizes small enough for biological applications while maintaining its luminescence remains a challenging task. Recent attempts to use mesoporous silica nanoparticles (MSN) as a template for growing nanosized CZGO have been successful. MSN is also a well-studied drug carrier, and incorporating CZGO in MSN further expands its potential in imaging-guided therapeutics. Despite the interest, it is unclear of how the addition of MSN would affect the luminescence properties of CZGO. In this work, we observed that forming a CZGO@MSN nanocomposite could enhance the luminescence intensity and extend the PersL lifetime of CZGO. X-ray absorption fine structure (XAFS) analysis was conducted to investigate the local structure of Zn2+, and an interaction between Zn2+ in CZGO and the MSN matrix was identified.

4.
Nano Lett ; 23(2): 685-693, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36594847

ABSTRACT

While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.

5.
Angew Chem Int Ed Engl ; 63(12): e202316360, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38243690

ABSTRACT

Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Lix YI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Lix YI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10-3  S cm-1 at 25 °C for Li4 YI7 . Additionally, the promising Li-metal compatibility of Li4 YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.

6.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36583711

ABSTRACT

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

7.
Inorg Chem ; 62(32): 13011-13020, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37535952

ABSTRACT

The field of designing artificial metalloproteins has yet to effectively tackle the incorporation of multimetal clusters, which is a key component of natural metalloproteins, such as metallothioneins (MTs) and calmodulin. MT is a physiological, essential, cysteine-rich metalloprotein that binds to a variety of metals but is only known to form metal-thiolate clusters with Cd2+, Zn2+, and Cu+. Bismuth is a xenobiotic metal and a component of metallodrugs used to treat gastric ulcers and cancer, as well as an emerging metal used in industrial practices. Electrospray ionization mass spectrometry, UV-visible spectroscopy, and extended X-ray absorption fine structure spectroscopy were used to probe the Bi3+ binding site structures in apo-MT3 (brain-located MT) at pH 7.4 and 2 and provide the complete set of binding affinities. We discovered the highly cooperative formation of a novel Bi3+ species, Bi2MT3, under physiological conditions, where each Bi3+ ion is coordinated by three cysteinyl thiolates, with one of the thiolates bridging between the two Bi3+ ions. This cluster structure was associated with a strong visible region absorption band, which was disrupted by the addition of Zn2+ and reversibly disrupted by acidification and increased temperature. This is the first reported presence of bridging cysteines for a xenobiotic metal in MT3 and the Bi2MT structure is the first Bi cluster found in a metalloprotein.

8.
Phys Chem Chem Phys ; 25(30): 20308-20319, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37099205

ABSTRACT

In this work, we studied the optical properties of Dy-doped Gd2O3 nanoparticles (NPs) before and after their APTES functionalisation. We obtained luminescent Dy@Gd2O3 NPs (0.5, 1, and 5% mol) using a modified polyol method. Our work describes their detailed structural analysis using FT-IR, XRD, HRTEM, TGA and XAS techniques. The results show that these systems present a crystalline structure with a body-centred cubic cell and particle sizes of 10 nm. The dopant position was inferred as substitutional, through XAS analysis at the M4,5-edges of Gd and Dy and K-edge of O, and in C2 sites, based on photoluminescence studies. There was sensitization of the luminescence by the matrix as shown by the emission increase of the hypersensitive transition (6F9/2 → 6H13/2, 572 nm) and also a broadband appears around 510 nm attributed to defects in Gd2O3. An enhanced emissive lifetime of 398 µs was found for the sample doped at 1%. We functionalised the Dy@Gd2O3 (at 1%) NPs with 3-aminopropiltrietoxisilane (APTES) for further application as a biomarker sensor. We found that these NPs conserved their luminescence after adding the surface agent (avoiding quenching effects) making them potential materials for biosensing.

9.
Small ; 18(8): e2106433, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34898005

ABSTRACT

Electrochemical CO2 reduction to valuable multi-carbon (C2+ ) products is attractive but with poor selectivity and activity due to the low-efficient CC coupling. Herein, a lithium vacancy-tuned Li2 CuO2 with square-planar [CuO4 ] layers is developed via an electrochemical delithiation strategy. Density functional theory calculations reveal that the lithium vacancies (VLi ) lead to a shorter distance between adjacent [CuO4 ] layers and reduce the coordination number of Li+ around each Cu, featuring with a lower energy barrier for COCO coupling than pristine Li2 CuO2 without VLi . With the VLi percentage of ≈1.6%, the Li2- x CuO2 catalyst exhibits a high Faradaic efficiency of 90.6 ± 7.6% for C2+ at -0.85 V versus reversible hydrogen electrode without iR correction, and an outstanding partial current density of -706 ± 32 mA cm-2 . This work suggests an attractive approach to create controllable alkali metal vacancy-tuned Cu catalytic sites toward C2+ products in electrochemical CO2 reduction.

10.
Phys Chem Chem Phys ; 24(35): 21131-21140, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36039710

ABSTRACT

Near-infrared (NIR)-emitting persistent luminescence (PersL) nanoparticles have attracted great attention as a novel optical probe for bioimaging and biosensing applications. These nanoparticles emit long-lasting luminescence after the removal of the excitation source, which effectively eliminates the interference from tissue autofluorescence. Cr-doped zinc gallate (ZnGa2O4:Cr3+, CZGO) is a representative NIR-emitting PersL material. On the other hand, amorphous calcium phosphate (ACP) is a widely used drug carrier due to its high biocompatibility. In this work, we present a design of an ACP-based drug carrier with PersL properties, by forming a CZGO-ACP composite. The PersL properties of CZGO were preserved by composite formation, while it is found that the Zn2+ could migrate from CZGO to ACP during composite formation, leading to different luminescence mechanisms between pure CZGO and the CZGO-ACP composite. The electronic structure of the composite was analyzed by synchrotron X-ray absorption spectroscopy, and a structure-luminescence correlation was proposed.


Subject(s)
Luminescence , Nanoparticles , Calcium , Drug Carriers , Nanoparticles/chemistry , Phosphates , Zinc , Zinc Compounds
11.
Phys Chem Chem Phys ; 24(47): 29034-29042, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36427044

ABSTRACT

Gold nanoclusters (AuNCs) are a unique class of materials that exhibit visible luminescence. Amorphous calcium phosphate (ACP) is a widely used biomaterial for a variety of purposes, such as drug delivery, bone cementing, and implant coatings. In this study, a nanocomposite of AuNCs and ACP is prepared by biomimetic mineralization in a Dulbecco's modified Eagle's medium (DMEM). The strong interaction between AuNCs and Ca2+ ions effectively induces aggregation of AuNCs. The as-formed nanocomposite, AuNCs@ACP, emits significantly enhanced luminescence compared to AuNCs alone. The luminescence enhancement mechanism is investigated using synchrotron X-ray absorption fine structure spectroscopy. In addition, the presence of AuNCs stabilizes ACP and also enhances the biocompatibility of ACP in promoting cell proliferation, and the nanocomposites are promising as nanoprobes for cancer therapy and/or bone tissue engineering.


Subject(s)
Biomimetics , Gold , Calcium Phosphates
12.
Nano Lett ; 20(10): 7751-7759, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32959660

ABSTRACT

Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.

13.
Nano Lett ; 17(10): 6469-6474, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28926715

ABSTRACT

Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

14.
Langmuir ; 33(50): 14244-14251, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29148786

ABSTRACT

We observed the growth phase transition of n-alkanethiols (AT), CH3(CH2)n-1SH, n = 4-16, directly implanted on a bare Si(111) surface, forming an AT monolayer. These monolayers were characterized with static water-contact angle, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray fine-structure spectroscopy, and grazing-angle reflection absorption Fourier-transform infrared spectroscopy. The integrated spectral results indicated that the implanted n-AT molecules formed a self-oriented and densely packed monolayer through formation of an S-Si bond. With the number of carbons in the alkyl chain at six or more, namely beginning at hexanethiol, the molecular monolayer began to develop an orientation-ordered structure, which is clearly shorter than that for AT monolayers on Au and Ag. This result implies that, with a stronger molecule-substrate interaction, an ordered molecular monolayer can form with a short chain.

15.
Nanotechnology ; 28(39): 395704, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28715345

ABSTRACT

Micrometer sized oxidation patterns were created in chemical vapor deposition grown graphene through scanning probe lithography (SPL) and then subsequently reduced by irradiation using a focused x-ray beam. Throughout the process, the films were characterized by lateral force microscopy, micro-Raman and micro-x-ray photoelectron spectroscopy. Firstly, the density of grain boundaries was found to be crucial in determining the maximum possible oxygen coverage with SPL. Secondly, the dominant factor in SPL oxidation was found to be the bias voltage. At low voltages, only structural defects are formed on grain boundaries. Above a distinct threshold voltage, oxygen coverage increased rapidly, with the duration of applied voltage affecting the final oxygen coverage. Finally, we found that, independent of initial conditions, types of defects or the amount of SPL oxidation, the same set of coupled rate equations describes the reduction dynamics with the limiting reduction step being C-C â†’ C=C.

16.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632861

ABSTRACT

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

17.
Nat Commun ; 15(1): 1719, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409205

ABSTRACT

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm-2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

18.
Nat Commun ; 14(1): 3780, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355635

ABSTRACT

Solid electrolyte is vital to ensure all-solid-state batteries with improved safety, long cyclability, and feasibility at different temperatures. Herein, we report a new family of amorphous solid electrolytes, xLi2O-MCly (M = Ta or Hf, 0.8 ≤ x ≤ 2, y = 5 or 4). xLi2O-MCly amorphous solid electrolytes can achieve desirable ionic conductivities up to 6.6 × 10-3 S cm-1 at 25 °C, which is one of the highest values among all the reported amorphous solid electrolytes and comparable to those of the popular crystalline ones. The mixed-anion structural models of xLi2O-MCly amorphous SEs are well established and correlated to the ionic conductivities. It is found that the oxygen-jointed anion networks with abundant terminal chlorines in xLi2O-MCly amorphous solid electrolytes play an important role for the fast Li-ion conduction. More importantly, all-solid-state batteries using the amorphous solid electrolytes show excellent electrochemical performance at both 25 °C and -10 °C. Long cycle life (more than 2400 times of charging and discharging) can be achieved for all-solid-state batteries using the xLi2O-TaCl5 amorphous solid electrolyte at 400 mA g-1, demonstrating vast application prospects of the oxychloride amorphous solid electrolytes.


Subject(s)
Body Fluids , Lithium , Electrolytes , Chlorides , Chlorine
19.
ACS Appl Mater Interfaces ; 14(15): 17570-17577, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35390250

ABSTRACT

Rechargeable aqueous zinc-ion batteries (AZIBs) are close complements to lithium-ion batteries for next-generation grid-scale applications owing to their high specific capacity, low cost, and intrinsic safety. Nevertheless, the viable cathode materials (especially manganese oxides) of AZIBs suffer from poor conductivity and inferior structural stability upon cycling, thereby impeding their practical applications. Herein, a facile synthetic strategy of bead-like manganese oxide coated with carbon nanofibers (MnOx-CNFs) based on electrospinning is reported, which can effectively improve the electron/ion diffusion kinetics and provide robust structural stability. These benefits of MnOx-CNFs are evident in the electrochemical performance metrics, with a long cycling durability (i.e., a capacity retention of 90.6% after 2000 cycles and 71% after 5000 cycles) and an excellent rate capability. Furthermore, the simultaneous insertion of H+/Zn2+ and the Mn redox process at the surface and in the bulk of MnOx-CNFs are clarified in detail. Our present study not only provides a simple avenue for synthesizing high-performance Mn-based cathode materials but also offers unique knowledge on understanding the corresponding electrochemical reaction mechanism for AZIBs.

20.
Article in English | MEDLINE | ID: mdl-36315848

ABSTRACT

Developing efficient electrocatalysts to accelerate the sluggish conversion of lithium polysulfides (LiPSs) is of paramount importance for improving the performances of lithium-sulfur (Li-S) batteries. However, a consensus has not yet been reached on the in situ evolution of the electrocatalysts as well as the real catalytic active sites. Herein, defective MnV2O6 (D-MVO) is designed as a precatalyst toward LiPSs' adsorption and conversion. We reveal that the introduction of surface V defects can effectively accelerate the in situ sulfurization of D-MVO during the electrochemical cycling process, which acts as the real electrocatalyst for LiPSs' retention and catalysis. The in situ-sulfurized D-MVO demonstrates much higher electrocatalytic activity than the defect-free MVO toward LiPSs' redox conversion. With these merits, the Li-S batteries with D-MVO separators achieve superior long-term cycling performance with a low decay rate of 0.056% per cycle after 1000 cycles at 1C. Even under an elevated sulfur loading of 5.5 mg cm-2, a high areal capacity of 4.21 mAh cm-2 is still retained after 50 cycles at 0.1C. This work deepens the cognition of the dynamic evolution of the electrocatalysts and provides a favorable strategy for designing efficient precatalysts for advanced Li-S batteries using defect engineering.

SELECTION OF CITATIONS
SEARCH DETAIL