Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 353: 120080, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38271881

ABSTRACT

The seawater intrusion (SWI) process lasts for decades in real world, thus the research on dynamic process of SWI is essential. The freshwater-saltwater mixing zone plays a crucial role in governing the groundwater movement and the solute transport in coastal aquifers. To date, there has been a lack of research on the hydrodynamic behavior of the mixing zone in the presence of subsurface physical barriers. In this work, we employed laboratory experiments and numerical simulations to investigate the dynamics of the mixing zone, comparing scenarios with and without subsurface physical barriers. The findings indicate that the construction of a subsurface physical barrier will not immediately slow down the seawater intrusion velocity and change the salinity distribution of mixing zone. The block effect of subsurface physical barriers with different heights or bottom opening sizes became apparent only when the wedge toe approached the physical barriers. The widening effect of increasing longitudinal dispersivity on the mixing zone width was more pronounced during the dynamic process compared to the steady state. Furthermore, the widening effect of increasing longitudinal dispersivity on the mixing zone was more significant compared to transverse dispersivity in both the SWI and subsurface dam scenarios throughout the intrusion process. However, in the cutoff wall scenarios, the widening effect of increasing transverse dispersivity became more obvious during the later intrusion period. Our conclusions provide a reference for the groundwater management in coastal aquifers. According to the current seawater intrusion situation, the local water bureau can predict the seawater intrusion velocity and the temporal changes of mixing zone after the construction of physical barriers.


Subject(s)
Groundwater , Hydrodynamics , Fresh Water , Water , Seawater , Environmental Monitoring
2.
Sci Total Environ ; 874: 162535, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870508

ABSTRACT

Cutoff walls have been widely used to prevent seawater intrusion (SWI) in coastal regions. Previous studies generally concluded that the ability of cutoff walls to prevent seawater intrusion depends on the higher flow velocity at the wall opening, which we have shown is not the most critical mechanism. In this work, we implemented numerical simulations to explore the driving force of cutoff walls on the repulsion of SWI in both homogeneous and stratified unconfined aquifers. The results delineated that the inland groundwater level was raised by cutoff walls, which generated a significant groundwater level difference beside two sides of the wall and thus provided a large hydraulic gradient to repel SWI. We further concluded that by increasing inland freshwater influx, the construction of cutoff wall could result in a high inland freshwater hydraulic head and fast freshwater velocity. The high inland freshwater hydraulic head posed a large hydraulic pressure to push the saltwater wedge seawards. Meanwhile, the fast freshwater flow could rapidly carry the salt from the mixing zone to the ocean and induce a narrow mixing zone. This conclusion explained the reason that the cutoff wall can improve the efficiency of SWI prevention through recharging freshwater upstream. With a defined freshwater influx, the mixing zone width and saltwater pollution area mitigated with the increase of the ratio between high and low hydraulic conductivity values (KH/KL) of the two layers. This was because the increase of KH/KL caused a higher freshwater hydraulic head, a faster freshwater velocity in the high-permeability layer, and the prominent change of flow direction at the interface between the two layers. According to the above findings, we deduced that any way to increase the inland hydraulic head upstream of the wall would improve the efficiency of cutoff walls, such as the freshwater recharge, the air injection, and the subsurface dam.

SELECTION OF CITATIONS
SEARCH DETAIL