Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.024
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 24(4): 664-675, 2023 04.
Article in English | MEDLINE | ID: mdl-36849745

ABSTRACT

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.


Subject(s)
Lymphatic Vessels , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Receptors, CXCR4/metabolism , Neoplasms/therapy , Neoplasms/pathology , Lymphatic Vessels/metabolism , Immunotherapy
2.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32302572

ABSTRACT

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Subject(s)
Cytoplasmic Granules/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Ribonucleoproteins/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , HeLa Cells , Humans , Nucleic Acid Conformation , Organelles/metabolism , Phosphorylation , RNA, Messenger/metabolism , Stress, Physiological/genetics
3.
Cell ; 174(4): 843-855.e19, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30017245

ABSTRACT

Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Melanoma/drug therapy , Neoplasm, Residual/drug therapy , Neoplastic Stem Cells/drug effects , Neural Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Retinoid X Receptor gamma/antagonists & inhibitors , Animals , Biomarkers, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , Male , Melanoma/metabolism , Melanoma/pathology , Mice, SCID , Mutation , Neoplasm, Residual/metabolism , Neoplasm, Residual/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36150385

ABSTRACT

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Subject(s)
Interferon Type I , RNA, Double-Stranded , Antiviral Agents , Autoimmune Diseases of the Nervous System , Exonucleases/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Nervous System Malformations , RNA, Double-Stranded/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics
6.
Cell ; 149(4): 832-46, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22579286

ABSTRACT

Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Frizzled Receptors/metabolism , Lamin Type A/metabolism , Neuromuscular Junction/metabolism , Nuclear Envelope/metabolism , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Animals , Drosophila melanogaster/ultrastructure , Humans , Larva/metabolism , Larva/ultrastructure , Muscle Fibers, Skeletal/ultrastructure , Nuclear Envelope/ultrastructure , Signal Transduction
7.
Nat Chem Biol ; 20(3): 291-301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37770698

ABSTRACT

Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.


Subject(s)
Biomolecular Condensates , Machine Learning
8.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399371

ABSTRACT

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Subject(s)
Glucosyltransferases , Lentinula , Metabolomics , Metabolomics/methods , Lentinula/enzymology , Glucosyltransferases/chemistry , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Phytochemicals/metabolism , Xylose/metabolism , Genome, Fungal , Liquid Chromatography-Mass Spectrometry
9.
J Immunol ; 211(9): 1348-1358, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37737664

ABSTRACT

Cytotoxic lymphocytes eliminate cancer cells through the release of lytic granules, a specialized form of secretory lysosomes. This compartment is part of the pleomorphic endolysosomal system and is distinguished by its highly dynamic Ca2+ signaling machinery. Several transient receptor potential (TRP) calcium channels play essential roles in endolysosomal Ca2+ signaling and ensure the proper function of these organelles. In this study, we examined the role of TRPML1 (TRP cation channel, mucolipin subfamily, member 1) in regulating the homeostasis of secretory lysosomes and their cross-talk with mitochondria in human NK cells. We found that genetic deletion of TRPML1, which localizes to lysosomes in NK cells, led to mitochondrial fragmentation with evidence of collapsed mitochondrial cristae. Consequently, TRPML1-/- NK92 (NK92ML1-/-) displayed loss of mitochondrial membrane potential, increased reactive oxygen species stress, reduced ATP production, and compromised respiratory capacity. Using sensitive organelle-specific probes, we observed that mitochondria in NK92ML1-/- cells exhibited evidence of Ca2+ overload. Moreover, pharmacological activation of the TRPML1 channel in primary NK cells resulted in upregulation of LC3-II, whereas genetic deletion impeded autophagic flux and increased accumulation of dysfunctional mitochondria. Thus, TRPML1 impacts autophagy and clearance of damaged mitochondria. Taken together, these results suggest that an intimate interorganelle communication in NK cells is orchestrated by the lysosomal Ca2+ channel TRPML1.


Subject(s)
Calcium Channels , Transient Receptor Potential Channels , Humans , Calcium Channels/metabolism , Calcium/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Mitochondria/metabolism , Lysosomes/metabolism , Killer Cells, Natural/metabolism
10.
Cytometry A ; 105(5): 345-355, 2024 05.
Article in English | MEDLINE | ID: mdl-38385578

ABSTRACT

Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population found in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application to PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analysis of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a ß-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images, and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC data set including nine patients and two disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the data set and had a tendency to underestimate CHC counts for regions of interest (ROIs) containing relatively large amounts of cells (>50,000) when using the conventional enumeration method. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the ß-VAE embeddings achieved an F1 score of 0.80, matching the average performance of human annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.


Subject(s)
Fluorescent Antibody Technique , Image Processing, Computer-Assisted , Leukocytes, Mononuclear , Neoplastic Cells, Circulating , Support Vector Machine , Humans , Leukocytes, Mononuclear/cytology , Image Processing, Computer-Assisted/methods , Neoplastic Cells, Circulating/pathology , Fluorescent Antibody Technique/methods , Neoplasms/pathology , Neoplasms/diagnosis , Neoplasms/blood , Single-Cell Analysis/methods
11.
Article in English | MEDLINE | ID: mdl-38415779

ABSTRACT

Two cocci-shaped, facultatively anaerobic, Gram-positive bacteria isolated from the faeces of a pig were designated as strains YH-aer221T and YH-aer222. Analysis of the 16S rRNA gene sequences revealed that the isolates were most closely related to Aerococcus suis JCM 18035T with 96.6 % similarity. The multi-locus sequence tree revealed that the isolates formed a sub-cluster adjacent to A. suis JCM 18035T. The average nucleotide identity values for the isolates and their most closely related strains were 71.8 and 71.7 %, respectively; and the digital DNA-DNA hybridization values for the isolates and their most closely related strains were 25.6 and 25.5 %, respectively. The main fatty acids were C18 : 1ω9c, C16 : 0 and C18 : 0. The cell wall contained the meso-diaminopimelic acid-based peptidoglycan. The two isolates shared the same metabolic pathways. Isolates YH-aer221T and YH-aer222 harboured the same CRISPR array with 33 and 46 spacers, respectively. Single-genome vs. metagenome analysis showed that the genomes of the isolates were not found in the available metagenome database. Given their chemotaxonomic, phenotypic and phylogenetic properties, YH-aer221T (= KCTC 25571T=JCM 35699T) and YH-aer222 (=KCTC 25573=JCM 35700) represent a novel taxon. The name Aerococcus kribbianus sp. nov. is proposed.


Subject(s)
Aerococcus , Swine , Animals , Anaerobiosis , Base Composition , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria, Anaerobic , Feces
12.
Article in English | MEDLINE | ID: mdl-38728210

ABSTRACT

Two rod-shaped, obligate anaerobic, Gram-stain-positive bacteria isolated from the pig faeces were designated YH-ols2216 and YH-ols2217T. Analysis of 16S rRNA gene sequences revealed that these isolates were most related to the members of the family Atopobiaceae, within the order Coriobacteriales, and Granulimonas faecalis KCTC 25474T with 92.0 and 92.5% similarities, respectively. The 16S rRNA gene sequence similarity within isolates was 99.9 %; and those between isolates YH-ols2216 and YH-ols2217T, and Atopobium minutum DSM 20586T, the type species of the type genus Atopobium within the family Atopobiaceae, were 88.5 and 88.7 %, respectively. Those between isolates and Coriobacterium glomerans PW2T, the type species of the type genus Coriobacterium within the family Coriobacteriaceae, were 88.7 and 89.1 %, respectively. The multi-locus sequence tree revealed that the isolates, alongside the genera Granulimonas and Leptogranulimonas, formed a distinct cluster between the families Atopobiaceae and Coriobacteriaceae. The average nucleotide identities and digital DNA-DNA hybridization values for the isolates and their most closely related strains ranged from 67.7 to 76.2 % and from 18.4 to 23.3 %, respectively. The main cellular fatty acids of the isolates were C18 : 0 DMA, C18 : 1 ω9c, C18 : 0 12OH, C18 : 0, and C16 : 0. The cell wall contained the peptidoglycan meso-diaminopimelic acid. Lactate was the main end-product of the isolates. The major polar lipids of isolate YH-ols2217T were aminophospholipid, aminolipids, and lipids. Menaquinones were not identified in the cells of the isolates. The DNA G+C contents of isolates YH-ols2216 and YH-ols2217T were 67.5 and 67.6 mol%, respectively. Considering these chemotaxonomic, phenotypic, and phylogenetic properties, Kribbibacteriaceae fam. nov. is proposed within the order Coriobacteriales. YH-ols2216 (=KCTC 25708=NBRC 116429) and YH-ols2217T (=KCTC 25709T=NBRC 116430T) represent a novel taxon within this new family and the name Kribbibacterium absianum gen. nov., sp. nov. is proposed. In addition, the genera Granulimonas and Leptogranulimonas are transferred to the family Kribbibacteriaceae fam. nov.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Feces , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Animals , Feces/microbiology , Swine , Nucleic Acid Hybridization , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Peptidoglycan
13.
Eur J Neurol ; 31(2): e16119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37909803

ABSTRACT

BACKGROUND AND PURPOSE: Germinal centers (GCs) can be observed in the thymic tissues of patients with thymoma-associated myasthenia gravis (MG). Although an association between thymic GCs and MG has been suggested, it is unknown whether the presence of GCs could predict the development of MG after the resection of thymoma, known as postthymectomy MG. METHODS: We conducted a retrospective analysis of previously nonmyasthenic patients who underwent surgical removal of the thymoma. All available thymic tissue slides were rereviewed by a pathologist to assess for GCs. Patients were classified into GC-positive and GC-negative groups based on the presence of GCs. The incidence of postthymectomy MG was compared between the two groups, and the risk factors for postthymectomy MG were assessed. RESULTS: Of the 196 previously nonmyasthenic patients who underwent thymoma resection, 21 were GC-positive, whereas 175 were GC-negative. Postthymectomy MG developed in 11 (5.6%) patients and showed a higher incidence in the GC-positive group than in the GC-negative group (33.3% vs. 2.3%, p < 0.001). No postoperative radiotherapy and the presence of GCs were risk factors for postthymectomy MG in the univariate analysis. In multivariate analysis, invasive thymoma (hazard ratio [HR] = 9.835, 95% confidence interval [CI] = 1.358-105.372), postoperative radiotherapy (HR = 0.160, 95% CI = 0.029-0.893), and presence of GCs (HR = 15.834, 95% CI = 3.742-67.000) were significantly associated with postthymectomy MG. CONCLUSIONS: Thymic GCs may be a significant risk factor for postthymectomy MG. Even in patients with thymoma who do not show clinical symptoms of MG, postthymectomy MG should be considered, especially if thymic GCs are observed.


Subject(s)
Myasthenia Gravis , Thymoma , Thymus Neoplasms , Humans , Thymoma/complications , Thymoma/surgery , Retrospective Studies , Thymectomy/adverse effects , Thymus Neoplasms/complications , Thymus Neoplasms/surgery , Myasthenia Gravis/complications
14.
Gastric Cancer ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970748

ABSTRACT

BACKGROUND: Changes in gastric microbiome are associated with gastric carcinogenesis. Studies on the association between gastric mucosa-associated gastric microbiome (MAM) and metachronous gastric cancer are limited. This study aimed to identify gastric MAM as a predictive factor for metachronous recurrence following endoscopic resection of gastric neoplasms. METHOD: Microbiome analyses were conducted for 81 patients in a prospective cohort to investigate surrogate markers to predict metachronous recurrence. Gastric MAM in non-cancerous corporal biopsy specimens was evaluated using Illumina MiSeq platform targeting 16S ribosomal DNA. RESULTS: Over a median follow-up duration of 53.8 months, 16 metachronous gastric neoplasms developed. Baseline gastric MAM varied with Helicobacter pylori infection status, but was unaffected by initial pathologic diagnosis, presence of atrophic gastritis, intestinal metaplasia, or synchronous lesions. The group with metachronous recurrence did not exhibit distinct phylogenetic diversity compared with the group devoid of recurrence but showed significant difference in ß-diversity. The study population could be classified into two distinct gastrotypes based on baseline gastric MAM: gastrotype 1, Helicobacter-abundant; gastrotype 2: Akkermansia-abundant. Patients in gastrotype 2 showed higher risk of metachronous recurrence than gastrotype (Cox proportional hazard analysis, adjusted hazard ratio [95% confidence interval]: 5.10 [1.09-23.79]). CONCLUSIONS: Gastric cancer patients can be classified into two distinct gastrotype groups by their MAM profiles, which were associated with different risk of metachronous recurrence.

15.
Gastric Cancer ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954175

ABSTRACT

BACKGROUND: Accurate prediction of pathologic results for early gastric cancer (EGC) based on endoscopic findings is essential in deciding between endoscopic and surgical resection. This study aimed to develop an artificial intelligence (AI) model to assess comprehensive pathologic characteristics of EGC using white-light endoscopic images and videos. METHODS: To train the model, we retrospectively collected 4,336 images and prospectively included 153 videos from patients with EGC who underwent endoscopic or surgical resection. The performance of the model was tested and compared to that of 16 endoscopists (nine experts and seven novices) using a mutually exclusive set of 260 images and 10 videos. Finally, we conducted external validation using 436 images and 89 videos from another institution. RESULTS: After training, the model achieved predictive accuracies of 89.7% for undifferentiated histology, 88.0% for submucosal invasion, 87.9% for lymphovascular invasion (LVI), and 92.7% for lymph node metastasis (LNM), using endoscopic videos. The area under the curve values of the model were 0.992 for undifferentiated histology, 0.902 for submucosal invasion, 0.706 for LVI, and 0.680 for LNM in the test. In addition, the model showed significantly higher accuracy than the experts in predicting undifferentiated histology (92.7% vs. 71.6%), submucosal invasion (87.3% vs. 72.6%), and LNM (87.7% vs. 72.3%). The external validation showed accuracies of 75.6% and 71.9% for undifferentiated histology and submucosal invasion, respectively. CONCLUSIONS: AI may assist endoscopists with high predictive performance for differentiation status and invasion depth of EGC. Further research is needed to improve the detection of LVI and LNM.

16.
Article in English | MEDLINE | ID: mdl-38720448

ABSTRACT

BACKGROUND AND AIM: The Model for End-Stage Liver Disease (MELD) is a reliable prognostic tool for short-term outcome prediction in patients with end-stage liver disease. MELD 3.0 was introduced to enhance the predictive accuracy. This study assessed the performance of MELD 3.0, in comparison to MELD and MELD-Na, in patients with alcoholic liver cirrhosis. METHODS: This multicenter prospective cohort study comprised patients with alcoholic cirrhosis admitted for acute deterioration of liver function in the Republic of Korea between 2015 and 2019. This study compared the predictive abilities of MELD, MELD-Na, and MELD 3.0, for 30-day and 90-day outcomes, specifically death or liver transplantation, and explored the factors influencing these outcomes. RESULTS: A total of 1096 patients were included in the study, with a mean age of 53.3 ± 10.4 years, and 82.0% were male. The mean scores for MELD, MELD-Na, and MELD 3.0 at the time of admission were 18.7 ± 7.2, 20.6 ± 7.7, and 21.0 ± 7.8, respectively. At 30 and 90 days, 7.2% and 14.1% of patients experienced mortality or liver transplantation. The areas under the receiver operating characteristic curves for MELD, MELD-Na, and MELD 3.0 at 30 days were 0.823, 0.820, and 0.828; and at 90 days were 0.765, 0.772, and 0.776, respectively. Factors associated with the 90-day outcome included concomitant chronic viral hepatitis, prolonged prothrombin time, elevated levels of aspartate transaminase, bilirubin, and creatinine, and low albumin levels. CONCLUSION: MELD 3.0 demonstrated improved performance compared to previous models, although the differences were not statistically significant.

17.
J Korean Med Sci ; 39(4): e22, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38288536

ABSTRACT

BACKGROUND: The purpose of this study is to investigate the epidemiological changes in chronic hepatitis B (CHB) and assess the impact of coronavirus disease 2019 (COVID-19) over the past 15 years in a region endemic to hepatitis B virus (HBV). METHODS: National Health Insurance Service claims data of hepatitis B patients spanning from 2007 to 2021 was utilized. To compare the characteristics of the hepatitis B group, a control group adjusted for age and gender through propensity score matching analysis was established. RESULTS: The number of patients with CHB has consistently increased over the past 15 years. The average age of the CHB patient group has shown a yearly rise, while the prevalence of male dominance has gradually diminished. The proportions of hepatocellular carcinoma, liver cirrhosis, and decompensation have exhibited a declining pattern, whereas the proportion of liver transplants has continuously risen. Patients with CHB have demonstrated significantly higher medical and medication costs compared to the control group. Moreover, patients with CHB have shown a higher prevalence of comorbidities along with a significantly higher rate of concomitant medication usage. During the COVID period, the HBV group experienced a substantial decrease in the number of outpatient visits and overall medical costs compared to the control group. CONCLUSION: The epidemiology of CHB has undergone significant changes over the past 15 years, encompassing shifts in prevalence, severity, medical costs, and comorbidities. Furthermore, the impact of COVID-19 has been observed to decrease healthcare utilization among patients with CHB when compared to controls.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Male , Female , Hepatitis B virus , Hepatitis B, Chronic/epidemiology , Hepatitis B/epidemiology , Liver Neoplasms/epidemiology , COVID-19/epidemiology , Republic of Korea/epidemiology
18.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891932

ABSTRACT

4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/ß-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other ß-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Drug Synergism , Fluorouracil , Wnt Signaling Pathway , beta Catenin , Humans , Fluorouracil/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Apoptosis/drug effects , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , TOR Serine-Threonine Kinases/metabolism
19.
Aesthet Surg J ; 44(6): NP411-NP420, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38330289

ABSTRACT

BACKGROUND: Implant-based breast reconstruction is associated with increased risk of early infection and late-stage capsular contracture. OBJECTIVES: We evaluated the feasibility of a dual drug-releasing patch that enabled the controlled delivery of antibiotics and immunosuppressants in a temporally and spatially appropriate manner to the implant site. METHODS: The efficacy of a dual drug-releasing patch, which was 3-dimensional-printed (3D-printed) with tissue-derived biomaterial ink, was evaluated in rats with silicone implants. The groups included implant only (n = 10); implant plus bacterial inoculation (n = 14); implant, bacterial inoculation, and patch loaded with gentamycin placed on the ventral side of the implant (n = 10), and implant, bacterial inoculation, and patch loaded with gentamycin and triamcinolone acetonide (n = 9). Histologic and immunohistochemical analyses were performed 8 weeks after implantation. RESULTS: The 2 drugs were sequentially released from the dual drug-releasing patch and exhibited different release profiles. Compared to the animals with bacterial inoculation, those with the antibiotic-only and the dual drug-releasing patch exhibited thinner capsules and lower myofibroblast activity and inflammation, indicating better tissue integration and less foreign body response. These effects were more pronounced with the dual drug-releasing patch than with the antibiotic-only patch. CONCLUSIONS: The 3D-printed dual drug-releasing patch effectively reduced inflammation and capsule formation in a rat model of silicone breast reconstruction. The beneficial effect of the dual drug-releasing patch was better than that of the antibiotic-only patch, indicating its therapeutic potential as a novel approach to preventing capsular contracture while reducing concerns of systemic side effects.


Subject(s)
Anti-Bacterial Agents , Breast Implants , Implant Capsular Contracture , Printing, Three-Dimensional , Animals , Breast Implants/adverse effects , Female , Rats , Implant Capsular Contracture/prevention & control , Implant Capsular Contracture/etiology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Gentamicins/administration & dosage , Silicone Gels/administration & dosage , Triamcinolone Acetonide/administration & dosage , Rats, Sprague-Dawley , Feasibility Studies , Immunosuppressive Agents/administration & dosage , Breast Implantation/adverse effects , Breast Implantation/instrumentation , Breast Implantation/methods , Disease Models, Animal , Models, Animal
20.
Angew Chem Int Ed Engl ; 63(3): e202312942, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38062619

ABSTRACT

The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.


Subject(s)
Clathrin , Micelles , Clathrin/metabolism , Endocytosis/physiology , Endosomes/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL