Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Chem Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664586

ABSTRACT

The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.

2.
Immunology ; 147(4): 399-413, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26694902

ABSTRACT

Retinoic acid receptor-related orphan nuclear receptor γ (RORγ) orchestrates a pro-inflammatory gene expression programme in multiple lymphocyte lineages including T helper type 17 (Th17) cells, γδ T cells, innate lymphoid cells and lymphoid tissue inducer cells. There is compelling evidence that RORγ-expressing cells are relevant targets for therapeutic intervention in the treatment of autoimmune and inflammatory diseases. Unlike Th17 cells, where RORγ expression is induced under specific pro-inflammatory conditions, γδ T cells and other innate-like immune cells express RORγ in the steady state. Small molecule mediated disruption of RORγ function in cells with pre-existing RORγ transcriptional complexes represents a significant and challenging pharmacological hurdle. We present data demonstrating that a novel, selective and potent small molecule RORγ inhibitor can block the RORγ-dependent gene expression programme in both Th17 cells and RORγ-expressing γδ T cells as well as a disease-relevant subset of human RORγ-expressing memory T cells. Importantly, systemic administration of this inhibitor in vivo limits pathology in an innate lymphocyte-driven mouse model of psoriasis.


Subject(s)
Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Benzamides/pharmacology , Gene Expression Regulation/drug effects , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyridines/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Dermatitis/drug therapy , Dermatitis/immunology , Dermatitis/metabolism , Dermatitis/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunologic Memory/drug effects , Interleukin-17/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism
3.
Bioorg Med Chem Lett ; 26(10): 2459-2463, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27080181

ABSTRACT

RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series.


Subject(s)
Hydrocarbons, Fluorinated/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Structure-Activity Relationship , Sulfonamides/chemistry , Binding Sites , Crystallography, X-Ray , Drug Design , Hydrocarbons, Fluorinated/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sulfonamides/pharmacology
4.
Bioorg Med Chem Lett ; 25(15): 2985-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048789

ABSTRACT

The nuclear receptor RORγ plays a central role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including TH17 cells. RORγ-dependent inflammation has been implicated in the pathogenesis of several major autoimmune diseases and thus RORγ is an attractive target for therapeutic intervention in these diseases. Starting from a lead biaryl compound 4a, replacement of the head phenyl moiety with a substituted aminopyrazole group resulted in a series with improved physical properties. Further SAR exploration led to analogues (e.g., 4j and 5m) as potent RORγ inverse agonists.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Humans , Interleukin-17/immunology , Mice , Models, Molecular , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Th17 Cells/drug effects , Th17 Cells/immunology
5.
Bioorg Med Chem Lett ; 25(15): 2991-7, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048806

ABSTRACT

RORγt is a pivotal regulator of a pro-inflammatory gene expression program implicated in the pathology of several major human immune-mediated diseases. Evidence from mouse models demonstrates that genetic or pharmacological inhibition of RORγ activity can block the production of pathogenic cytokines, including IL-17, and convey therapeutic benefit. We have identified and developed a biaryl-carboxylamide series of RORγ inverse agonists via a structure based design approach. Co-crystal structures of compounds 16 and 48 supported the design approach and confirmed the key interactions with RORγ protein; the hydrogen bonding with His479 was key to the significant improvement in inverse agonist effect. The results have shown this is a class of potent and selective RORγ inverse agonists, with demonstrated oral bioavailability in rodents.


Subject(s)
Amides/chemistry , Amides/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Amides/pharmacokinetics , Animals , Biphenyl Compounds/pharmacokinetics , Cell Line , Cytokines/immunology , Drug Discovery , Humans , Hydrogen Bonding , Interleukin-17/immunology , Mice , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Rats
6.
Bioorg Med Chem Lett ; 25(3): 474-80, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25575657

ABSTRACT

PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket. We show the SAR suggesting the importance of having a hydrogen bond donor in this pocket for inhibiting PIM2; however, this interaction is not important for inhibiting PIM1 or PIM3. In addition, we report the discovery of a new class of PIM inhibitors by using computational de novo design tool implemented in MOE software (Chemical Computing Group). These inhibitors have a different interaction profile.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Static Electricity , Structure-Activity Relationship
7.
Bioorg Med Chem ; 21(14): 4011-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23647822

ABSTRACT

Keap1 binds to the Nrf2 transcription factor to promote its degradation, resulting in the loss of gene products that protect against oxidative stress. While cell-active small molecules have been identified that modify cysteines in Keap1 and effect the Nrf2 dependent pathway, few act through a non-covalent mechanism. We have identified and characterized several small molecule compounds that specifically bind to the Keap1 Kelch-DC domain as measured by NMR, native mass spectrometry and X-ray crystallography. One compound upregulates Nrf2 response genes measured by a luciferase cell reporter assay. The non-covalent inhibition strategy presents a reasonable course of action to avoid toxic side-effects due to non-specific cysteine modification.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Small Molecule Libraries/pharmacology , Carrier Proteins , Crystallography, X-Ray , Intracellular Signaling Peptides and Proteins/chemistry , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/chemistry , Protein Binding/drug effects , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Thermodynamics
8.
Bioorg Med Chem Lett ; 22(5): 2070-4, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22326168

ABSTRACT

Since the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability. Finally, switching from a primary amide to a two-substituted pyrrolidine amide gave rise to compound 15a which exhibited the desired AKA/CDK1 inhibition phenotype in cells but showed moderate activity in animal models using HCT116 tumor cell lines.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line , Colon/drug effects , Colon/pathology , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 22(12): 4033-7, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607669

ABSTRACT

This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2. In addition, the modeling rationale was based on superimposing the structures of Aurora-A kinase and CDK2 which revealed enough differences leading to a path for selectivity improvement. The synthesis of the new series of pyrrolopyrimidine analogs relied on the development of a different route for the two key intermediates 7 and 19 which led to analogs with both tunable activity against CDK1 and maintained cell potency.


Subject(s)
Antineoplastic Agents/chemical synthesis , CDC2 Protein Kinase/chemistry , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Antineoplastic Agents/pharmacology , Aurora Kinases , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line , Drug Design , Humans , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structural Homology, Protein , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 21(18): 5633-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21798738

ABSTRACT

A novel class of pyrazolopyrimidine-sulfonamides was discovered as selective dual inhibitors of aurora kinase A (AKA) and cyclin-dependent kinase 1 (CDK1). These inhibitors were originally designed based on an early lead (compound I). SAR development has led to the discovery of potent inhibitors with single digit nM IC(50)s towards both AKA and CDK1. An exemplary compound 1a has demonstrated good efficacy in an HCT116 colon cancer xenograft model.


Subject(s)
Antineoplastic Agents/pharmacology , CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Colonic Neoplasms/pathology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
13.
Bioorg Med Chem Lett ; 18(6): 1864-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18304809

ABSTRACT

A series of 3,4- and 3,5-disubstituted phenyl-containing cyclobutenedione analogues were synthesized and evaluated as CXCR2 receptor antagonists. Variations in the disubstitution pattern of the phenyl ring afforded new compounds with potent CXCR2 binding affinity in the low nanomolar ranges. Moreover, two potent compounds 19 and 26 exhibited good oral pharmacokinetic profiles.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cyclobutanes/chemistry , Haplorhini , Molecular Structure , Protein Binding , Rats , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 18(1): 228-31, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18006311

ABSTRACT

A series of novel and potent 3,4-diamino-2,5-thiadiazole-1-oxides were prepared and found to show excellent binding affinities for CXCR2 and CXCR1 receptors and excellent inhibitory activity of Gro-alpha and IL-8 mediated in vitro hPMN MPO release of CXCR2 and CXCR1 expressing cell lines. On the other hand, a closely related 3,4-diamino-2,5-thiadiazole-dioxide did not show functional activity despite its excellent binding affinities for CXCR2 and CXCR1 in membrane binding assays. A detailed SAR has been discussed in these two closely related structures.


Subject(s)
Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Chemokine CXCL1/chemistry , Chemokine CXCL1/pharmacology , Chemotactic Factors/chemistry , Chemotactic Factors/pharmacology , Humans , Interleukin-8/chemistry , Interleukin-8/pharmacology , Kinetics , Neutrophils/drug effects , Neutrophils/enzymology , Oxides/chemical synthesis , Oxides/chemistry , Oxides/pharmacokinetics , Oxides/pharmacology , Peroxidase/metabolism , Rats , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacokinetics , Thiadiazoles/pharmacology
15.
Bioorg Med Chem Lett ; 18(4): 1318-22, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18242983

ABSTRACT

Comprehensive SAR studies were undertaken in the 3,4-diaminocyclobut-3-ene-1,2-dione class of CXCR2/CXCR1 receptor antagonists to explore the role of the heterocycle on chemokine receptor binding affinities, functional activity, as well as oral exposure in rat. The nature of the heterocycle as well as the requisite substitution pattern around the heterocycle was shown to have a dramatic effect on the overall biological profile of this class of compounds. The furyl class, particularly the 4-halo adducts, was found to possess superior binding affinities for both the CXCR2 and CXCR1 receptors, functional activity, as well as oral exposure in rat versus other heterocyclic derivatives.


Subject(s)
Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Diamines/chemistry , Diamines/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Cell Line , Cyclobutanes/chemical synthesis , Diamines/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Mice , Stereoisomerism , Structure-Activity Relationship
16.
J Med Chem ; 49(26): 7603-6, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181143

ABSTRACT

Structure-activity studies on lead cyclobutenedione 3 led to the discovery of 4 (SCH 527123), a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist with excellent cell-based activity. Compound 4 displayed good oral bioavailability in rat and may be a potential therapeutic agent for the treatment of various inflammatory diseases.


Subject(s)
Benzamides/pharmacology , Cyclobutanes/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Administration, Oral , Animals , Benzamides/administration & dosage , Benzamides/chemical synthesis , Biological Availability , Cyclobutanes/administration & dosage , Cyclobutanes/chemical synthesis , Molecular Structure , Rats , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , Structure-Activity Relationship
17.
J Neuroimmunol ; 283: 74-85, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26004161

ABSTRACT

Fumarate-containing pharmaceuticals are potent therapeutic agents that influence multiple cellular pathways. Despite proven clinical efficacy, there is a significant lack of data that directly defines the molecular mechanisms of action of related, yet distinct fumarate compounds. We systematically compared the impact of dimethyl fumarate (DMF), monomethyl fumarate (MMF) and a mixture of monoethyl fumarate salts (Ca(++), Mg(++), Zn(++); MEF) on defined cellular responses. We demonstrate that DMF inhibited NF-κB-driven cytokine production and nuclear translocation of p65 and p52 in an Nrf2-independent manner. Equivalent doses of MMF and MEF did not affect NF-κB signaling. These results highlight a key difference in the biological impact of related, yet distinct fumarate compounds.


Subject(s)
Fumarates/pharmacology , NF-kappa B/antagonists & inhibitors , Active Transport, Cell Nucleus/drug effects , Animals , Bone Neoplasms/pathology , Burkitt Lymphoma/pathology , Cations/pharmacology , Cell Line, Tumor , Cells, Cultured , Cytokines/metabolism , Dimethyl Fumarate , Humans , In Vitro Techniques , Lymphocytes/drug effects , Lymphocytes/metabolism , Maleates/pharmacology , Mice , Mice, Knockout , Molecular Structure , NF-E2-Related Factor 2/deficiency , NF-E2-Related Factor 2/physiology , NF-kappa B p52 Subunit/metabolism , Neoplasm Proteins/antagonists & inhibitors , Osteosarcoma/pathology , Signal Transduction/drug effects , Spleen/cytology , Transcription Factor RelA/metabolism
18.
J Med Chem ; 55(17): 7786-95, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22938030

ABSTRACT

Alkyne 40, 5-(2-amino-4-chloro-7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2-methylpent-4-yn-2-ol (EC144), is a second generation inhibitor of heat shock protein 90 (Hsp90) and is substantially more potent in vitro and in vivo than the first generation inhibitor 14 (BIIB021) that completed phase II clinical trials. Alkyne 40 is more potent than 14 in an Hsp90α binding assay (IC(50) = 1.1 vs 5.1 nM) as well as in its ability to degrade Her-2 in MCF-7 cells (EC(50) = 14 vs 38 nM). In a mouse model of gastric tumors (N87), 40 stops tumor growth at 5 mg/kg and causes partial tumor regressions at 10 mg/kg (po, qd × 5). Under the same conditions, 14 stops tumor growth only at 120 mg/kg, and does not induce partial regressions. Thus, alkyne 40 is approximately 20-fold more efficacious than 14 in mice.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Humans , X-Ray Diffraction
19.
J Pharmacol Exp Ther ; 322(2): 477-85, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17496166

ABSTRACT

In neutrophils, growth-related protein-alpha (CXCL1) and interleukin-8 (CXCL8), are potent chemoattractants (Cytokine 14:27-36, 2001; Biochemistry 42:2874-2886, 2003) and can stimulate myeloperoxidase release via activation of the G protein-coupled receptors CXCR1 and CXCR2. The role of CXCR1 and CXCR2 in the pathogenesis of inflammatory responses has encouraged the development of small molecule antagonists for these receptors. The data presented herein describe the pharmacology of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-methyl-furan-2-yl)-propyl]amino]-3,4-dioxo-cyclobut-1-enylamino}-benzamide (Sch527123), a novel antagonist of both CXCR1 and CXCR2. Sch527123 inhibited chemokine binding to (and activation of) these receptors in an insurmountable manner and, as such, is categorized as an allosteric antagonist. Sch527123 inhibited neutrophil chemotaxis and myeloperoxidase release in response to CXCL1 and CXCL8 but had no effect on the response of these cells to C5a or formyl-methionyl-leucyl-phenylalanine. The pharmacological specificity of Sch527123 was confirmed by testing in a diversity profile against a panel of enzymes, channels, and receptors. To measure compound affinity, we characterized [(3)H]Sch527123 in both equilibrium and nonequilibrium binding analyses. Sch527123 binding to CXCR1 and CXCR2 was both saturable and reversible. Although Sch527123 bound to CXCR1 with good affinity (K(d) = 3.9 +/- 0.3 nM), the compound is CXCR2-selective (K(d) = 0.049 +/- 0.004 nM). Taken together, our data show that Sch527123 represents a novel, potent, and specific CXCR2 antagonist with potential therapeutic utility in a variety of inflammatory conditions.


Subject(s)
Benzamides/pharmacology , Cyclobutanes/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Benzamides/chemistry , Binding, Competitive/drug effects , Calcium Signaling/drug effects , Cell Line , Cell Membrane/metabolism , Chemotaxis/drug effects , Complement C5a/pharmacology , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Interleukin-8/metabolism , Mice , Molecular Structure , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/cytology , Neutrophils/drug effects , Protein Binding/drug effects , Radioligand Assay , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction/drug effects
20.
Bioorg Med Chem Lett ; 17(13): 3778-83, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17459706

ABSTRACT

A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.


Subject(s)
Chemistry, Pharmaceutical/methods , Furans/chemistry , Furans/pharmacokinetics , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Administration, Oral , Animals , Area Under Curve , Dogs , Drug Design , Furans/chemical synthesis , Humans , Inhibitory Concentration 50 , Interleukin-8/chemistry , Kinetics , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL