Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 23(4): 1306-1312, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36745443

ABSTRACT

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

2.
ACS Nano ; 17(8): 7456-7465, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37014733

ABSTRACT

Introducing magnetism to two-dimensional topological insulators is a central issue in the pursuit of magnetic topological materials in low dimensionality. By means of low-temperature growth at 80 K, we succeeded in fabricating a monolayer stanene on Co/Cu(111) and resolving ferromagnetic spin contrast by field-dependent spin-polarized scanning tunneling microscopy (SP-STM). Increases of both remanence to saturation magnetization ratio (Mr/Ms) and coercive field (Hc) due to an enhanced perpendicular magnetic anisotropy (PMA) are further identified by out-of-plane magneto-optical Kerr effect (MOKE). In addition to ultraflat stanene fully relaxed on bilayer Co/Cu(111) from density functional theory (DFT), characteristic topological properties including an in-plane s-p band inversion and a spin-orbit coupling (SOC) induced gap about 0.25 eV at the Γ̅ point have also been verified in the Sn-projected band structure. Interfacial coupling of single-atomic-layer stanene with ferromagnetic Co biatomic layers allows topological band features to coexist with ferromagnetism, facilitating a conceptual design of atomically thin magnetic topological heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL