Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161279

ABSTRACT

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


Subject(s)
Aging/pathology , Interleukin-6/metabolism , Pituitary Gland/pathology , Stem Cells/pathology , Animals , Cell Proliferation , Inflammation/pathology , Mice , Organoids/pathology , Phenotype , Single-Cell Analysis , Transcriptome/genetics , Up-Regulation/genetics
2.
Cell Mol Life Sci ; 79(3): 153, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35217915

ABSTRACT

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF's epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-ß (TGFß) and abrogated by TGFß receptor inhibition, thereby reproducing TGFß's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFß receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.


Subject(s)
Dental Sac/metabolism , Organoids/metabolism , Ameloblasts/cytology , Ameloblasts/metabolism , Cell Differentiation , Cells, Cultured , Dental Sac/cytology , Epidermal Growth Factor/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Organoids/cytology , Organoids/pathology , Phenotype , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Transcriptome , Transforming Growth Factor beta/metabolism
3.
Genome Res ; 29(10): 1659-1672, 2019 10.
Article in English | MEDLINE | ID: mdl-31515287

ABSTRACT

Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.


Subject(s)
Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , X Chromosome Inactivation/genetics , Animals , Chromatin/genetics , Female , Gene Silencing , Genes, X-Linked/genetics , Histone Deacetylases/genetics , Mice , Transcriptional Activation/genetics , X Chromosome/genetics
4.
J Cell Sci ; 132(20)2019 10 22.
Article in English | MEDLINE | ID: mdl-31519808

ABSTRACT

Reprogramming to induced pluripotency induces the switch of somatic cell identity to induced pluripotent stem cells (iPSCs). However, the mediators and mechanisms of reprogramming remain largely unclear. To elucidate the mediators and mechanisms of reprogramming, we used a siRNA-mediated knockdown approach for selected candidate genes during the conversion of somatic cells into iPSCs. We identified Tox4 as a novel factor that modulates cell fate through an assay that determined the efficiency of iPSC reprogramming. We found that Tox4 is needed early in reprogramming to efficiently generate early reprogramming intermediates, irrespective of the reprogramming conditions used. Tox4 enables proper exogenous reprogramming factor expression, and the closing and opening of putative somatic and pluripotency enhancers early during reprogramming, respectively. We show that the TOX4 protein assembles into a high molecular form. Moreover, Tox4 is also required for the efficient conversion of fibroblasts towards the neuronal fate, suggesting a broader role of Tox4 in modulating cell fate. Our study reveals Tox4 as a novel transcriptional modulator of cell fate that mediates reprogramming from the somatic state to the pluripotent and neuronal fate.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cellular Reprogramming , Fibroblasts/metabolism , High Mobility Group Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Animals , Cell Line , Fibroblasts/cytology , High Mobility Group Proteins/genetics , Induced Pluripotent Stem Cells/cytology , Mice , Neural Stem Cells/cytology
5.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Article in English | MEDLINE | ID: mdl-30943775

ABSTRACT

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Subject(s)
Aortic Aneurysm/pathology , Aortic Dissection/pathology , Autophagy , Cell Plasticity , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Adult , Aged , Aortic Dissection/chemically induced , Aortic Dissection/metabolism , Angiotensin II , Animals , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm/chemically induced , Aortic Aneurysm/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cell Lineage , Cells, Cultured , Disease Models, Animal , Endoribonucleases/metabolism , Female , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
6.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Article in English | MEDLINE | ID: mdl-31434493

ABSTRACT

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Subject(s)
Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Demethylation , Gene Expression , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Humans , Inflammation/metabolism , Interleukin-6/metabolism , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism
7.
Circ Res ; 119(12): 1313-1323, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27682618

ABSTRACT

RATIONALE: Vascular smooth muscle cell (VSMC) accumulation is a hallmark of atherosclerosis and vascular injury. However, fundamental aspects of proliferation and the phenotypic changes within individual VSMCs, which underlie vascular disease, remain unresolved. In particular, it is not known whether all VSMCs proliferate and display plasticity or whether individual cells can switch to multiple phenotypes. OBJECTIVE: To assess whether proliferation and plasticity in disease is a general characteristic of VSMCs or a feature of a subset of cells. METHODS AND RESULTS: Using multicolor lineage labeling, we demonstrate that VSMCs in injury-induced neointimal lesions and in atherosclerotic plaques are oligoclonal, derived from few expanding cells. Lineage tracing also revealed that the progeny of individual VSMCs contributes to both alpha smooth muscle actin (aSma)-positive fibrous cap and Mac3-expressing macrophage-like plaque core cells. Costaining for phenotypic markers further identified a double-positive aSma+ Mac3+ cell population, which is specific to VSMC-derived plaque cells. In contrast, VSMC-derived cells generating the neointima after vascular injury generally retained the expression of VSMC markers and the upregulation of Mac3 was less pronounced. Monochromatic regions in atherosclerotic plaques and injury-induced neointima did not contain VSMC-derived cells expressing a different fluorescent reporter protein, suggesting that proliferation-independent VSMC migration does not make a major contribution to VSMC accumulation in vascular disease. CONCLUSIONS: We demonstrate that extensive proliferation of a low proportion of highly plastic VSMCs results in the observed VSMC accumulation after injury and in atherosclerotic plaques. Therapeutic targeting of these hyperproliferating VSMCs might effectively reduce vascular disease without affecting vascular integrity.


Subject(s)
Atherosclerosis/physiopathology , Cell Proliferation/physiology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Neointima/physiopathology , Vascular System Injuries/physiopathology , Animals , Atherosclerosis/pathology , Disease Models, Animal , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Neointima/pathology , Vascular System Injuries/pathology
8.
NAR Genom Bioinform ; 5(3): lqad068, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37435358

ABSTRACT

Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.

9.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Article in English | MEDLINE | ID: mdl-35994249

ABSTRACT

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Spinocerebellar Ataxias , Adult , Animals , Humans , Muscle, Smooth, Vascular/pathology , Cardiovascular Diseases/pathology , Cell Proliferation , Atherosclerosis/pathology , Phenotype , Spinocerebellar Ataxias/pathology , Myocytes, Smooth Muscle/pathology , Cells, Cultured
10.
Cell Stem Cell ; 29(9): 1346-1365.e10, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055191

ABSTRACT

A hallmark of primate postimplantation embryogenesis is the specification of extraembryonic mesoderm (EXM) before gastrulation, in contrast to rodents where this tissue is formed only after gastrulation. Here, we discover that naive human pluripotent stem cells (hPSCs) are competent to differentiate into EXM cells (EXMCs). EXMCs are specified by inhibition of Nodal signaling and GSK3B, are maintained by mTOR and BMP4 signaling activity, and their transcriptome and epigenome closely resemble that of human and monkey embryo EXM. EXMCs are mesenchymal, can arise from an epiblast intermediate, and are capable of self-renewal. Thus, EXMCs arising via primate-specific specification between implantation and gastrulation can be modeled in vitro. We also find that most of the rare off-target cells within human blastoids formed by triple inhibition (Kagawa et al., 2021) correspond to EXMCs. Our study impacts our ability to model and study the molecular mechanisms of early human embryogenesis and related defects.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Embryo, Mammalian , Germ Layers , Humans , Mesoderm , Primates
11.
Nat Cell Biol ; 24(6): 858-871, 2022 06.
Article in English | MEDLINE | ID: mdl-35697783

ABSTRACT

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.


Subject(s)
Pluripotent Stem Cells , Polycomb Repressive Complex 2 , Cell Differentiation/genetics , Chromatin/genetics , Histones/genetics , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Trophoblasts/metabolism
12.
Commun Biol ; 4(1): 611, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021256

ABSTRACT

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Subject(s)
Atherosclerosis/pathology , Cellular Senescence , Inflammation/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Telomere/pathology , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cell Proliferation , Cells, Cultured , DNA Damage , Disease Models, Animal , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/physiology , Muscle Proteins/physiology , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Neointima/etiology , Neointima/metabolism , Telomere/genetics , Telomeric Repeat Binding Protein 2/metabolism
13.
Cell Stem Cell ; 28(9): 1625-1640.e6, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34004179

ABSTRACT

Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.


Subject(s)
Embryonic Development , Transcriptome , Animals , Blastocyst , Cell Lineage/genetics , Embryonic Development/genetics , Germ Layers , Humans , Mice , Transcriptome/genetics
14.
Front Cell Dev Biol ; 7: 169, 2019.
Article in English | MEDLINE | ID: mdl-31552244

ABSTRACT

Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).

15.
Nat Commun ; 9(1): 4567, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385745

ABSTRACT

Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention.


Subject(s)
Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/genetics , Transcriptome , Animals , Aorta/metabolism , Ataxin-1/metabolism , Carotid Arteries/metabolism , Cell Lineage , Disease Susceptibility , Gene Expression Profiling , Mice , Muscle, Smooth, Vascular/cytology , Sequence Analysis, RNA , Single-Cell Analysis
16.
Nat Commun ; 9(1): 5401, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559342

ABSTRACT

The original version of this Article contained errors in the author affiliations.Martin R. Bennett was incorrectly associated with Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, Phoebe Oldach was incorrectly associated with Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.This has now been corrected in the HTML version of the Article. The PDF version of the Article was correct at the time of publication.

17.
Dev Cell ; 33(4): 455-68, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26017770

ABSTRACT

The chemokine CXCL12 and its receptor CXCR4 have many functions during embryonic and post-natal life. We used murine models to investigate the role of CXCL12/CXCR4 signaling in cardiac development and found that embryonic Cxcl12-null hearts lacked intra-ventricular coronary arteries (CAs) and exhibited absent or misplaced CA stems. We traced the origin of this phenotype to defects in the early stages of CA stem formation. CA stems derive from the peritruncal plexus, an encircling capillary network that invades the wall of the developing aorta. We showed that CXCL12 is present at high levels in the outflow tract, while peritruncal endothelial cells (ECs) express CXCR4. In the absence of CXCL12, ECs were abnormally localized and impaired in their ability to anastomose with the aortic lumen. We propose that CXCL12 is required for connection of peritruncal plexus ECs to the aortic endothelium and thus plays a vital role in CA formation.


Subject(s)
Chemokine CXCL12/physiology , Coronary Vessels/embryology , Embryo, Mammalian/cytology , Endothelium, Vascular/cytology , Heart/physiology , Receptors, CXCR4/physiology , Animals , Aorta/cytology , Aorta/metabolism , Cells, Cultured , Coronary Vessels/cytology , Embryo, Mammalian/metabolism , Endothelium, Vascular/metabolism , Female , In Situ Hybridization , Male , Mice , Mice, Knockout , Organogenesis/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL