Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197283

ABSTRACT

Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , Protein Unfolding , Alkylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Endoplasmic Reticulum Stress , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , X-Box Binding Protein 1/metabolism
2.
Nucleic Acids Res ; 47(11): e61, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30869144

ABSTRACT

DNA repair is essential for the maintenance of genomic integrity, and evidence suggest that inter-individual variation in DNA repair efficiency may contribute to disease risk. However, robust assays suitable for quantitative determination of DNA repair capacity in large cohort and clinical trials are needed to evaluate these apparent associations fully. We describe here a set of microplate-based oligonucleotide assays for high-throughput, non-radioactive and quantitative determination of repair enzyme activity at individual steps and over multiple steps of the DNA base excision repair pathway. The assays are highly sensitive: using HepG2 nuclear extract, enzyme activities were quantifiable at concentrations of 0.0002 to 0.181 µg per reaction, depending on the enzyme being measured. Assay coefficients of variation are comparable with other microplate-based assays. The assay format requires no specialist equipment and has the potential to be extended for analysis of a wide range of DNA repair enzyme activities. As such, these assays hold considerable promise for gaining new mechanistic insights into how DNA repair is related to individual genetics, disease status or progression and other environmental factors and investigating whether DNA repair activities can be used a biomarker of disease risk.


Subject(s)
Colorimetry/methods , DNA Repair Enzymes/metabolism , DNA Repair , Enzyme Assays/methods , Animals , Caco-2 Cells , Cells, Cultured , DNA/genetics , DNA Damage , Hep G2 Cells , High-Throughput Screening Assays , Humans , Metabolic Networks and Pathways , Mice, Knockout
3.
Dis Model Mech ; 13(10)2020 10 30.
Article in English | MEDLINE | ID: mdl-32994318

ABSTRACT

Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons did not affect their survival or function. In contrast, Atrip deficiency in retinal progenitor cells (RPCs) led to severe lamination defects followed by secondary photoreceptor degeneration and loss of vision. Furthermore, we showed that RPCs lacking functional ATRIP exhibited higher levels of replicative stress and accumulated endogenous DNA damage that was accompanied by stabilization of TRP53. Notably, inactivation of Trp53 prevented apoptosis of Atrip-deficient progenitor cells and was sufficient to rescue retinal dysplasia, neurodegeneration and loss of vision. Together, these results reveal an essential role of ATRIP-mediated replication stress response in CNS development and suggest that the TRP53-mediated apoptosis of progenitor cells might contribute to retinal malformations in Seckel syndrome and other MPD disorders.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Abnormalities, Multiple/pathology , Adaptor Proteins, Signal Transducing/metabolism , DNA-Binding Proteins/metabolism , Nerve Degeneration/pathology , Retinal Dysplasia/pathology , Stem Cells/pathology , Animals , Apoptosis , Blindness/pathology , Cell Death , Cell Proliferation , DNA Damage , Disease Models, Animal , Embryo, Mammalian/pathology , Embryonic Development , Mice , Nerve Degeneration/complications , Neurogenesis , Photoreceptor Cells, Vertebrate/pathology , Retina/pathology , Retinal Dysplasia/complications , Syndrome , Tumor Suppressor Protein p53/metabolism , Vision, Ocular
4.
Sci Rep ; 10(1): 2209, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042007

ABSTRACT

DNA alkylation damage is repaired by base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG). Despite its role in DNA repair, AAG-initiated BER promotes cytotoxicity in a process dependent on poly (ADP-ribose) polymerase-1 (PARP-1); a NAD+-consuming enzyme activated by strand break intermediates of the AAG-initiated repair process. Importantly, PARP-1 activation has been previously linked to impaired glycolysis and mitochondrial dysfunction. However, whether alkylation affects cellular metabolism in the absence of AAG-mediated BER initiation is unclear. To address this question, we temporally profiled repair and metabolism in wild-type and Aag-/- cells treated with the alkylating agent methyl methanesulfonate (MMS). We show that, although Aag-/- cells display similar levels of alkylation-induced DNA breaks as wild type, PARP-1 activation is undetectable in AAG-deficient cells. Accordingly, Aag-/- cells are protected from MMS-induced NAD+ depletion and glycolysis inhibition. MMS-induced mitochondrial dysfunction, however, is AAG-independent. Furthermore, treatment with FK866, a selective inhibitor of the NAD+ salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT), synergizes with MMS to induce cytotoxicity and Aag-/- cells are resistant to this combination FK866 and MMS treatment. Thus, AAG plays an important role in the metabolic response to alkylation that could be exploited in the treatment of conditions associated with NAD+ dysregulation.


Subject(s)
DNA Breaks/drug effects , DNA Glycosylases/deficiency , DNA Repair , Poly (ADP-Ribose) Polymerase-1/metabolism , Acrylamides/pharmacology , Alkylation , Animals , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/metabolism , DNA Glycosylases/genetics , Fibroblasts , Glycolysis/drug effects , Methyl Methanesulfonate/pharmacology , Mice , Mice, Knockout , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Piperidines/pharmacology , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL