Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33712425

ABSTRACT

Cattle are a reservoir for Shiga toxin-producing Escherichia coli (STEC), zoonotic pathogens that cause serious clinical disease. Scotland has a higher incidence of STEC infection in the human population than the European average. The aim of this study was to investigate the prevalence and epidemiology of non-O157 serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle. Fecal samples (n = 2783) were collected from 110 herds in 2014 and 2015 and screened by real-time PCR. Herd-level prevalence (95% confidence interval [CI]) for O103, O26, and O145 was estimated as 0.71 (0.62, 0.79), 0.43 (0.34, 0.52), and 0.23 (0.16, 0.32), respectively. Only two herds were positive for O111. Shiga toxin prevalence was high in both herds and pats, particularly for stx2 (herd level: 0.99; 95% CI: 0.94, 1.0). O26 bacterial strains were isolated from 36 herds on culture. Fifteen herds yielded O26 stx-positive isolates that additionally harbored the intimin gene; six of these herds shed highly pathogenic stx2-positive strains. Multiple serogroups were detected in herds and pats, with only 25 herds negative for all serogroups. Despite overlap in detection, regional and seasonal effects were observed. Higher herd prevalence for O26, O103, and stx1 occurred in the South West, and this region was significant for stx2 at the pat level (P = 0.015). Significant seasonal variation was observed for O145 prevalence, with the highest prevalence in autumn (P = 0.032). Negative herds were associated with Central Scotland and winter. Herds positive for all serogroups were associated with autumn and larger herd size and were not housed at sampling.IMPORTANCE Cattle are reservoirs for Shiga toxin-producing Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, resulting in serious disease and kidney failure in the most vulnerable. The contribution of non-O157 serogroups to STEC illness was underestimated for many years due to the lack of specific tests. Recently, non-O157 human cases have increased, with O26 STEC of particular note. It is therefore vital to investigate the level and composition of non-O157 in the cattle reservoir and to compare them historically and by the clinical situation. In this study, we found cattle prevalence high for toxin, as well as for O103 and O26 serogroups. Pathogenic O26 STEC were isolated from 14% of study herds, with toxin subtypes similar to those seen in Scottish clinical cases. This study highlights the current risk to public health from non-O157 STEC in Scottish cattle.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Genes, Bacterial , Shiga Toxin/genetics , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Feces/microbiology , Prevalence , Scotland/epidemiology , Serogroup
2.
BMC Infect Dis ; 16: 222, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27209082

ABSTRACT

BACKGROUND: Worldwide, there is a wealth of literature examining patient-level risk factors for methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia. At the hospital-level it is generally accepted that MRSA bacteraemia is more common in larger hospitals. In Scotland, size does not fully explain all the observed variation among hospitals. The aim of this study was to identify risk factors for the presence and rate of MRSA bacteraemia cases in Scottish mainland hospitals. Specific hypotheses regarding hospital size, type and connectivity were examined. METHODS: Data from 198 mainland Scottish hospitals (defined as having at least one inpatient per year) were analysed for financial year 2007-08 using logistic regression (Model 1: presence/absence of MRSA bacteraemia) and Poisson regression (Model 2: rate of MRSA bacteraemia). The significance of risk factors representing various measures of hospital size, type and connectivity were investigated. RESULTS: In Scotland, size was not the only significant risk factor identified for the presence and rate of MRSA bacteraemia. The probability of a hospital having at least one case of MRSA bacteraemia increased with hospital size only if the hospital exceeded a certain level of connectivity. Higher levels of MRSA bacteraemia were associated with the large, highly connected teaching hospitals with high ratios of patients to domestic staff. CONCLUSIONS: A hospital's level of connectedness within a network may be a better measure of a hospital's risk of MRSA bacteraemia than size. This result could be used to identify high risk hospitals which would benefit from intensified infection control measures.


Subject(s)
Bacteremia/epidemiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/epidemiology , Adult , Aged , Bacteremia/diagnosis , Bacteremia/microbiology , Factor Analysis, Statistical , Female , Hospitals, Teaching/statistics & numerical data , Humans , Male , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/physiology , Middle Aged , Risk Factors , Scotland/epidemiology , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology
3.
Nucleic Acids Res ; 42(14): 9436-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25053841

ABSTRACT

Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Ixodes/genetics , Ixodes/virology , RNA Interference , Animals , Argonaute Proteins/physiology , Cell Line , RNA, Small Interfering/chemistry , RNA, Small Untranslated/chemistry , RNA, Viral/chemistry , Ribonuclease III/physiology
4.
Proc Natl Acad Sci U S A ; 110(40): 16265-70, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043803

ABSTRACT

Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.


Subject(s)
Bacterial Vaccines/therapeutic use , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli O157/pathogenicity , Mass Vaccination/veterinary , Zoonoses/prevention & control , Animals , Bacterial Shedding/genetics , Cattle , Escherichia coli Infections/prevention & control , Escherichia coli Infections/transmission , Feces/microbiology , Humans , Models, Immunological , Polymerase Chain Reaction/veterinary , Public Health , Risk Assessment , Scotland , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Zoonoses/microbiology
5.
PLoS Pathog ; 8(11): e1002977, 2012.
Article in English | MEDLINE | ID: mdl-23144608

ABSTRACT

Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses.


Subject(s)
Aedes , Alphavirus Infections/immunology , Immunity, Innate , Insect Proteins/immunology , Monophenol Monooxygenase/immunology , Semliki forest virus/physiology , Virus Replication/physiology , Aedes/immunology , Aedes/virology , Animals , Cell Line , Cricetinae , Female
6.
PLoS Pathog ; 8(5): e1002672, 2012.
Article in English | MEDLINE | ID: mdl-22615557

ABSTRACT

Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.


Subject(s)
Bacterial Secretion Systems , Coliphages/genetics , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Lysogeny , Shiga Toxin 2/genetics , Animals , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/virology , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Shiga Toxin 2/biosynthesis , Trans-Activators/genetics , Trans-Activators/metabolism
7.
BMC Vet Res ; 10: 95, 2014 Apr 26.
Article in English | MEDLINE | ID: mdl-24766709

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) O157 is a virulent zoonotic strain of enterohaemorrhagic E. coli. In Scotland (1998-2008) the annual reported rate of human infection is 4.4 per 100,000 population which is consistently higher than other regions of the UK and abroad. Cattle are the primary reservoir. Thus understanding infection dynamics in cattle is paramount to reducing human infections.A large database was created for farms sampled in two cross-sectional surveys carried out in Scotland (1998-2004). A statistical model was generated to identify risk factors for the presence of E. coli O157 on farms. Specific hypotheses were tested regarding the presence of E. coli O157 on local farms and the farms previous status. Pulsed-field gel electrophoresis (PFGE) profiles were further examined to ascertain whether local spread or persistence of strains could be inferred. RESULTS: The presence of an E. coli O157 positive local farm (average distance: 5.96 km) in the Highlands, North East and South West, farm size and the number of cattle moved onto the farm 8 weeks prior to sampling were significant risk factors for the presence of E. coli O157 on farms. Previous status of a farm was not a significant predictor of current status (p = 0.398). Farms within the same sampling cluster were significantly more likely to be the same PFGE type (p < 0.001), implicating spread of strains between local farms. Isolates with identical PFGE types were observed to persist across the two surveys, including 3 that were identified on the same farm, suggesting an environmental reservoir. PFGE types that were persistent were more likely to have been observed in human clinical infections in Scotland (p < 0.001) from the same time frame. CONCLUSIONS: The results of this study demonstrate the spread of E. coli O157 between local farms and highlight the potential link between persistent cattle strains and human clinical infections in Scotland. This novel insight into the epidemiology of Scottish E. coli O157 paves the way for future research into the mechanisms of transmission which should help with the design of control measures to reduce E. coli O157 from livestock-related sources.


Subject(s)
Cattle Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli O157/isolation & purification , Animals , Cattle , Cattle Diseases/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Risk Factors , Scotland/epidemiology
8.
Vet Res ; 44: 46, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23822567

ABSTRACT

The control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries relies on the rapid detection and removal of infected animals. In this paper we use the observed relationship between the onset of clinical signs and direct contact transmission of FMDV to identify predictors for the onset of clinical signs and identify possible approaches to preclinical screening in the field. Threshold levels for various virological and immunological variables were determined using Receiver Operating Characteristic (ROC) curve analysis and then tested using generalized linear mixed models to determine their ability to predict the onset of clinical signs. In addition, concordance statistics between qualitative real time PCR test results and virus isolation results were evaluated. For the majority of animals (71%), the onset of clinical signs occurred 3-4 days post infection. The onset of clinical signs was associated with high levels of virus in the blood, oropharyngeal fluid and nasal fluid. Virus is first detectable in the oropharyngeal fluid, but detection of virus in the blood and nasal fluid may also be good candidates for preclinical indicators. Detection of virus in the air was also significantly associated with transmission. This study is the first to identify statistically significant indicators of infectiousness for FMDV at defined time periods during disease progression in a natural host species. Identifying factors associated with infectiousness will advance our understanding of transmission mechanisms and refine intra-herd and inter-herd disease transmission models.


Subject(s)
Cattle Diseases/transmission , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/transmission , Animals , Antibodies, Viral/blood , Cattle , Cattle Diseases/virology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Real-Time Polymerase Chain Reaction/veterinary
9.
Front Microbiol ; 14: 1260422, 2023.
Article in English | MEDLINE | ID: mdl-38029122

ABSTRACT

O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.

10.
Emerg Infect Dis ; 18(3): 439-48, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22377426

ABSTRACT

Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin-producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx(2) in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26-associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx(2) phage acquisition.


Subject(s)
Escherichia coli Infections/microbiology , Shiga-Toxigenic Escherichia coli/pathogenicity , Animals , Cattle , Cattle Diseases/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity , Humans , Multilocus Sequence Typing , Prevalence , Scotland/epidemiology , Shiga Toxins/genetics , Shiga-Toxigenic Escherichia coli/genetics , Virulence Factors/genetics
11.
J Virol ; 85(6): 2907-17, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21191029

ABSTRACT

RNA interference (RNAi) is an important mosquito defense mechanism against arbovirus infection. In this paper we study the processes underlying antiviral RNAi in Aedes albopictus-derived U4.4 mosquito cells infected with Semliki Forest virus (SFV) (Togaviridae; Alphavirus). The production of virus-derived small interfering RNAs (viRNAs) from viral double-stranded RNA (dsRNA) is a key event in this host response. dsRNA could be formed by RNA replication intermediates, by secondary structures in RNA genomes or antigenomes, or by both. Which of these dsRNAs is the substrate for the generation of viRNAs is a fundamental question. Here we used deep sequencing of viRNAs and bioinformatic analysis of RNA secondary structures to gain insights into the characteristics and origins of viRNAs. An asymmetric distribution of SFV-derived viRNAs with notable areas of high-level viRNA production (hot spots) and no or a low frequency of viRNA production (cold spots) along the length of the viral genome with a slight bias toward the production of genome-derived viRNAs over antigenome-derived viRNAs was observed. Bioinformatic analysis suggests that hot spots of viRNA production are rarely but not generally associated with putative secondary structures in the SFV genome, suggesting that most viRNAs are derived from replicative dsRNA. A pattern of viRNAs almost identical to those of A. albopictus cells was observed for Aedes aegypti-derived Aag2 cells, suggesting common mechanisms that lead to viRNA production. Hot-spot viRNAs were found to be significantly less efficient at mediating antiviral RNAi than cold-spot viRNAs, pointing toward a nucleic acid-based viral decoy mechanism to evade the RNAi response.


Subject(s)
Aedes/physiology , Aedes/virology , RNA Interference , RNA, Small Interfering/metabolism , Semliki forest virus/growth & development , Aedes/immunology , Animals , Cell Line , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Semliki forest virus/genetics
12.
J R Coll Physicians Edinb ; 52(3): 204-212, 2022 09.
Article in English | MEDLINE | ID: mdl-36369813

ABSTRACT

BACKGROUND: COVID-19 mortality risk factors have been established in large cohort studies; long-term mortality outcomes are less documented. METHODS: We performed multivariable logistic regression to identify factors associated with in-patient mortality and intensive care unit (ICU) admission in symptomatic COVID-19 patients admitted to hospitals in South-East Scotland from 1st March to 30th June 2020. One-year mortality was reviewed. RESULTS: Of 726 patients (median age 72; interquartile range: 58-83 years, 55% male), 104 (14%) required ICU admission and 199 (27%) died in hospital. A further 64 died between discharge and 30th June 2021 (36% overall 1-year mortality). Stepwise logistic regression identified age >79 (odds ratio (OR), 4.77 (95% confidence interval (CI), 1.96-12.75)), male sex (OR, 1.83 (95% CI, 1.21-2.80)) and higher European Cooperative Oncology Group/World Health Organization performance status as associated with higher mortality risk. DISCUSSION: Poor functional baseline was the predominant independent risk factor for mortality in COVID-19. More than one-third of individuals had died by 1 year following admission.


Subject(s)
COVID-19 , Humans , Male , Aged , Female , SARS-CoV-2 , Intensive Care Units , Hospitalization , Risk Factors , Hospital Mortality , Retrospective Studies
13.
Infect Control Hosp Epidemiol ; 42(8): 968-977, 2021 08.
Article in English | MEDLINE | ID: mdl-33349283

ABSTRACT

OBJECTIVE: To determine risk factors for carbapenemase-producing organisms (CPOs) and to determine the prognostic impact of CPOs. DESIGN: A retrospective matched case-control study. PATIENTS: Inpatients across Scotland in 2010-2016 were included. Patients with a CPO were matched with 2 control groups by hospital, admission date, specimen type, and bacteria. One group comprised patients either infected or colonized with a non-CPO and the other group were general inpatients. METHODS: Conditional logistic regression models were used to identify risk factors for CPO infection and colonization, respectively. Mortality rates and length of postisolation hospitalization were compared between CPO and non-CPO patients. RESULTS: In total, 70 CPO infection cases (with 210 general inpatient controls and 121 non-CPO controls) and 34 CPO colonization cases (with 102 general inpatient controls and 60 non-CPO controls) were identified. Risk factors for CPO infection versus general inpatients were prior hospital stay (adjusted odds ratio [aOR], 4.05; 95% confidence interval [CI], 1.52-10.78; P = .005), longer hospitalization (aOR, 1.07; 95% CI, 1.04-1.10; P < .001), longer intensive care unit (ICU) stay (aOR, 1.41; 95% CI, 1.01-1.98; P = .045), and immunodeficiency (aOR, 3.68; 95% CI, 1.16-11.66; P = .027). Risk factors for CPO colonization were prior high-dependency unit (HDU) stay (aOR, 11.46; 95% CI, 1.27-103.09; P = .030) and endocrine, nutritional, and metabolic (ENM) diseases (aOR, 3.41; 95% CI, 1.02-11.33; P = .046). Risk factors for CPO infection versus non-CPO infection were prolonged hospitalization (aOR, 1.02; 95% CI, 1.00-1.03; P = .038) and HDU stay (aOR, 1.13; 95% CI, 1.02-1.26; P = .024). No differences in mortality rates were detected between CPO and non-CPO patients. CPO infection was associated with longer hospital stay than non-CPO infection (P = .041). CONCLUSIONS: A history of (prolonged) hospitalization, prolonged ICU or HDU stay; ENM diseases; and being immunocompromised increased risk for CPO. CPO infection was not associated with increased mortality but was associated with prolonged hospital stay.


Subject(s)
Inpatients , Bacterial Proteins , Case-Control Studies , Humans , Retrospective Studies , Risk Factors , beta-Lactamases
14.
Front Vet Sci ; 8: 755833, 2021.
Article in English | MEDLINE | ID: mdl-34778436

ABSTRACT

Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.

15.
BMC Microbiol ; 9: 276, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-20040112

ABSTRACT

BACKGROUND: Escherichia coli O157 is an important cause of acute diarrhoea, haemorrhagic colitis and, especially in children, haemolytic uraemic syndrome (HUS). Incidence rates for human E. coli O157 infection in Scotland are higher than most other United Kingdom, European and North American countries. Cattle are considered the main reservoir for E. coli O157. Significant associations between livestock related exposures and human infection have been identified in a number of studies. RESULTS: Animal Studies: There were no statistically significant differences (P = 0.831) in the mean farm-level prevalence between the two studies (SEERAD: 0.218 (95%CI: 0.141-0.32); IPRAVE: 0.205 (95%CI: 0.135-0.296)). However, the mean pat-level prevalence decreased from 0.089 (95%CI: 0.075-0.105) to 0.040 (95%CI: 0.028-0.053) between the SEERAD and IPRAVE studies respectively (P < 0.001). Highly significant (P < 0.001) reductions in mean pat-level prevalence were also observed in the spring, in the North East and Central Scotland, and in the shedding of phage type (PT) 21/28. Human Cases: Contrasting the same time periods, there was a decline in the overall comparative annual reported incidence of human cases as well as in all the major PT groups except 'Other' PTs. For both cattle and humans, the predominant phage type between 1998 and 2004 was PT21/28 comprising over 50% of the positive cattle isolates and reported human cases respectively. The proportion of PT32, however, was represented by few (<5%) of reported human cases despite comprising over 10% of cattle isolates. Across the two studies there were differences in the proportion of PTs 21/28, 32 and 'Other' PTs in both cattle isolates and reported human cases; however, only differences in the cattle isolates were statistically significant (P = 0.002). CONCLUSION: There was no significant decrease in the mean farm-level prevalence of E. coli O157 between 1998 and 2004 in Scotland, despite significant declines in mean pat-level prevalence. Although there were declines in the number of human cases between the two study periods, there is no statistically significant evidence that the overall rate (per 100,000 population) of human E. coli O157 infections in Scotland over the last 10 years has altered. Comparable patterns in the distribution of PTs 21/28 and 32 between cattle and humans support a hypothesized link between the bovine reservoir and human infections. This emphasizes the need to apply and improve methods to reduce bovine shedding of E. coli O157 in Scotland where rates appear higher in both cattle and human populations, than in other countries.


Subject(s)
Bacterial Shedding , Cattle Diseases/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli O157/genetics , Animal Husbandry , Animals , Bacteriophage Typing , Cattle , Cattle Diseases/microbiology , Disease Reservoirs/veterinary , Escherichia coli Infections/microbiology , Escherichia coli O157/classification , Humans , Incidence , Prevalence , Scotland/epidemiology
16.
Sci Rep ; 7: 42992, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225040

ABSTRACT

Classical swine fever (CSF) is a notifiable, highly contagious viral disease of swine which results in severe welfare and economic consequences in affected countries. To improve preparedness, it is critical to have some understanding of how CSF would spread should it be introduced. Based on the data recorded during the 2000 epidemic of CSF in Great Britain (GB), a spatially explicit, premises-based model was developed to explore the risk of CSF spread in GB. We found that large outbreaks of CSF would be rare and generated from a limited number of areas in GB. Despite the consistently low vulnerability of the British swine industry to large CSF outbreaks, we identified concerns with respect to the role played by the non-commercial sector of the industry. The model further revealed how various epidemiological features may influence the spread of CSF in GB, highlighting the importance of between-farm biosecurity in preventing widespread dissemination of the virus. Knowledge of factors affecting the risk of spread are key components for surveillance planning and resource allocation, and this work provides a valuable stepping stone in guiding policy on CSF surveillance and control in GB.


Subject(s)
Classical Swine Fever/epidemiology , Animals , Epidemics , Industry , Models, Theoretical , Risk , Swine , United Kingdom/epidemiology
17.
BMC Microbiol ; 6: 99, 2006 Dec 02.
Article in English | MEDLINE | ID: mdl-17140453

ABSTRACT

BACKGROUND: E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity. METHODS: A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically. RESULTS: The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157. CONCLUSION: PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT.


Subject(s)
Animal Husbandry , Cattle Diseases/epidemiology , Coliphages/isolation & purification , Escherichia coli Infections/veterinary , Escherichia coli O157 , Animals , Bacteriophage Typing , Cattle , Cattle Diseases/microbiology , Colony Count, Microbial , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli O157/classification , Escherichia coli O157/isolation & purification , Escherichia coli O157/virology , Feces/microbiology , Risk Factors , Scotland/epidemiology , Shiga Toxin 1/genetics , Water Supply
18.
BMC Infect Dis ; 6: 5, 2006 Jan 11.
Article in English | MEDLINE | ID: mdl-16405727

ABSTRACT

BACKGROUND: Epidemiological analyses indicate that the age distribution of natural cases of transmissible spongiform encephalopathies (TSEs) reflect age-related risk of infection, however, the underlying mechanisms remain poorly understood. Using a comparative approach, we tested the hypothesis that, there is a significant correlation between risk of infection for scrapie, bovine spongiform encephalopathy (BSE) and variant CJD (vCJD), and the development of lymphoid tissue in the gut. METHODS: Using anatomical data and estimates of risk of infection in mathematical models (which included results from previously published studies) for sheep, cattle and humans, we calculated the Spearman's rank correlation coefficient, rs, between available measures of Peyer's patch (PP) development and the estimated risk of infection for an individual of the corresponding age. RESULTS: There was a significant correlation between the measures of PP development and the estimated risk of TSE infection; the two age-related distributions peaked in the same age groups. This result was obtained for each of the three host species: for sheep, surface area of ileal PP tissue vs risk of infection, rs = 0.913 (n = 19, P < 0.001), and lymphoid follicle density vs risk of infection, rs = 0.933 (n = 19, P < 0.001); for cattle, weight of PP tissue vs risk of infection, rs = 0.693 (n = 94, P < 0.001); and for humans, number of PPs vs risk of infection, rs = 0.384 (n = 46, P = 0.008). In addition, when changes in exposure associated with BSE-contaminated meat were accounted for, the two age-related patterns for humans remained concordant: rs = 0.360 (n = 46, P = 0.014). CONCLUSION: Our findings suggest that, for sheep, cattle and humans alike there is an association between PP development (or a correlate of PP development) and susceptibility to natural TSE infection. This association may explain changes in susceptibility with host age, and differences in the age-susceptibility relationship between host species.


Subject(s)
Peyer's Patches/physiology , Prion Diseases/transmission , Age Distribution , Animals , Cattle , Cattle Diseases/transmission , Disease Susceptibility , Humans , Peyer's Patches/anatomy & histology , Risk Factors , Sheep , Sheep Diseases/transmission , Species Specificity
19.
Sci Rep ; 6: 26589, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27220895

ABSTRACT

This study assessed the prevalence and zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) sampled from 104 dairy units in the central region of Zambia and compared these with isolates from patients presenting with diarrhoea in the same region. A subset of 297 E. coli strains were sequenced allowing in silico analyses of phylo- and sero-groups. The majority of the bovine strains clustered in the B1 'commensal' phylogroup (67%) and included a diverse array of serogroups. 11% (41/371) of the isolates from Zambian dairy cattle contained Shiga toxin genes (stx) while none (0/73) of the human isolates were positive. While the toxicity of a subset of these isolates was demonstrated, none of the randomly selected STEC belonged to key serogroups associated with human disease and none encoded a type 3 secretion system synonymous with typical enterohaemorrhagic strains. Positive selection for E. coli O157:H7 across the farms identified only one positive isolate again indicating this serotype is rare in these animals. In summary, while Stx-encoding E. coli strains are common in this dairy population, the majority of these strains are unlikely to cause disease in humans. However, the threat remains of the emergence of strains virulent to humans from this reservoir.


Subject(s)
Cattle Diseases , Escherichia coli Infections/genetics , Phylogeny , Shiga-Toxigenic Escherichia coli , Zoonoses , Animals , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Humans , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/pathogenicity , Zambia , Zoonoses/genetics , Zoonoses/microbiology
20.
Prev Vet Med ; 119(3-4): 97-104, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25779556

ABSTRACT

The parasite Fasciola hepatica is a major cause of economic loss to the agricultural community worldwide as a result of morbidity and mortality in livestock, including cattle. Cattle are the principle reservoir of verocytotoxigenic Escherichia coli O157 (VTEC O157), an important cause of disease in humans. To date there has been little empirical research on the interaction between F. hepatica and VTEC O157. It is hypothesised that F. hepatica, which is known to suppress type 1 immune responses and induce an anti-inflammatory or regulatory immune environment in the host, may promote colonisation of the bovine intestine with VTEC O157. Here we assess whether it is statistically feasible to augment a prospective study to quantify the prevalence of VTEC O157 in cattle in Great Britain with a pilot study to test this hypothesis. We simulate data under the framework of a mixed-effects logistic regression model in order to calculate the power to detect an association effect size (odds ratio) of 2. In order to reduce the resources required for such a study, we exploit the fact that the test results for VTEC O157 will be known in advance of testing for F. hepatica by restricting analysis to farms with a VTEC O157 sample prevalence of >0% and <100%. From a total of 270 farms (mean 27 cows per farm) that will be tested for VTEC O157, power of 87% can be achieved, whereby testing of F. hepatica would only be necessary for an expected 50 farms, thus considerably reducing costs. Pre-study sample size calculations are an important part of any study design. The framework developed here is applicable to the study of other co-infections.


Subject(s)
Bacterial Shedding , Coinfection/veterinary , Escherichia coli Infections/veterinary , Escherichia coli O157/physiology , Fasciola hepatica/isolation & purification , Fascioliasis/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/parasitology , England/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Fascioliasis/epidemiology , Fascioliasis/parasitology , Feasibility Studies , Female , Pilot Projects , Prevalence , Prospective Studies , Risk Assessment , Scotland/epidemiology , Wales/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL